A. | $-\frac{2}{3}π$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}π$ | D. | $-\frac{2}{3}π$或$\frac{π}{3}$ |
分析 利用根與系數(shù)的關系求得tanα+tanβ,tanαtanβ,代入兩角和的正切求得tan(α+β),結合范圍得答案.
解答 解:∵tanα,tanβ是方程x2+4$\sqrt{3}$x+5=0的兩根,
∴tanα+tanβ=$-4\sqrt{3}$,tanαtanβ=5,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}=\frac{-4\sqrt{3}}{1-5}=\sqrt{3}$.
∵α∈(-$\frac{π}{2}$,$\frac{π}{2}$),β∈($-\frac{π}{2}$,$\frac{π}{2}$),
∴α+β∈(-π,π),則α+β=$-\frac{2}{3}π$.
故選:A.
點評 本題考查兩角和與差的正切,考查由已知角的三角函數(shù)值求角,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1≤ab≤$\frac{{a}^{2}+^{2}}{2}$ | B. | $\frac{{a}^{2}+^{2}}{2}$<ab<1 | C. | ab<$\frac{{a}^{2}+^{2}}{2}$<1 | D. | 1<ab<$\frac{{a}^{2}+^{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | P=Q | B. | P⊆Q | C. | Q⊆P | D. | P∩Q=∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (2,+∞) | C. | (-∞,-2) | D. | (-∞,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com