解:(1)任取x
1,x
2∈R,且x
1<x
2,
則F(x
1)-F(x
2)
=f(x
1)-f(a-x
1)-[f(x
2)-f(a-x
2)].
=[f(x
1)-f(x
2)]+[f(a-x
2)-f(a-x
1)].
∵x
1<x
2,∴-x
1>-x
2,∴a-x
1>a-x
2,
∵函數(shù)f(x)是定義在R上的增函數(shù),∴f(x
1)<f(x
2),f(a-x
2)<f(a-x
1).
∴f(x
1)-f(x
2)<0,f(a-x
2)-f(a-x
1)<0.
∴[f(x
1)-f(x
2)]+[f(a-x
2)-f(a-x
1)]<0.
即F(x
1)<F(x
2),
∴F(x)是R上的增函數(shù).
(2)設(shè)M(x
0,y
0)為函數(shù)y=F(x)的圖象上任一點(diǎn),設(shè)點(diǎn)M(x
0,y
0)關(guān)于點(diǎn)(
,0)的對(duì)稱點(diǎn)為N(m,n),
則
=
,0=
,,∴m=a-x
0,n=-y
0,
∵把m=a-x
0代入F(x)=f(x)-f(a-x).
得,f(a-x
0)-f(a-a+x
0)=f(a-x
0)-f(x
0)=-y
0=n
即點(diǎn)N(m,n)在函數(shù)F(x)的圖象上.
∴函數(shù)y=F(x)的圖象關(guān)于點(diǎn)(
,0)成中心對(duì)稱圖形.
分析:(1)利用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性的步驟,第一步,設(shè)所給區(qū)間上任意兩個(gè)自變量x
1,x
2,且x
1<x
2,第二步,作差比較F(x
1)與F(x
2)的大小,第三步,得出結(jié)論,本題嚴(yán)格按照步驟去做,比較F(x
1)與F(x
2)時(shí),要借助函數(shù)f(x)的單調(diào)性.
(2)要證明函數(shù)y=F(x)的圖象關(guān)于點(diǎn)(
,0)成中心對(duì)稱圖形,只需證明函數(shù)y=F(x)的圖象上任意一點(diǎn)關(guān)于點(diǎn)
(
,0)的對(duì)稱點(diǎn)在函數(shù)y=F(x)的圖象上即可,先利用中點(diǎn)坐標(biāo)公式求出函數(shù)y=F(x)的圖象上任意一點(diǎn)關(guān)于點(diǎn)
(
,0)的對(duì)稱點(diǎn)坐標(biāo),再代入函數(shù)y=F(x)的解析式,看是否成立即可.
點(diǎn)評(píng):本題主要考查定義法證明函數(shù)的單調(diào)性,以及抽象函數(shù)對(duì)稱性的判斷,做題時(shí)嚴(yán)格按照定義去做.