10.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}}&{x≥3}\\{f(x+1)}&{x<3}\end{array}}\right.$,則f(1)的值是$\frac{1}{8}$.

分析 直接利用分段函數(shù)化簡求解即可.

解答 解:函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}}&{x≥3}\\{f(x+1)}&{x<3}\end{array}}\right.$,
則f(1)=f(2)=f(3)=$(\frac{1}{2})^{3}$=$\frac{1}{8}$.
故答案為:$\frac{1}{8}$.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知0<a<1,在函數(shù)y=logax(x≥1)的圖象上有A,B,C三點(diǎn),它們的橫坐標(biāo)分別是t,t+2,t+4
(Ⅰ)若△ABC面積為S,求S=f(t);
(Ⅱ)判斷S=f(x)的單調(diào)性,求S=f(t)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.ABCD-A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1,B1C1的中點(diǎn),P是上底面的棱AD上的一點(diǎn),AP=$\frac{a}{3}$,過PMN的平面交上底面于PQ,Q在CD上,則PQ等于( 。
A.$\frac{\sqrt{2}}{2}$aB.$\frac{\sqrt{2}}{4}$aC.$\frac{\sqrt{2}}{3}$aD.$\frac{2\sqrt{2}}{3}$a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|x2-x-2≤0},集合B為整數(shù)集,則A∩B={-1,0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|x2-(2a+1)x+(a-1)(a+2)≤0},$B=\left\{{\left.x\right|\frac{5}{x-2}≥1,x∈R}\right\}$.
(1)求集合B;          
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式 ${log_{\frac{1}{2}}}(2-x)>2$的解集為$({\frac{7}{4},2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中既不是奇函數(shù)也不是偶函數(shù)的是( 。
A.y=$\sqrt{{x}^{2}-2}$B.y=ln(x+$\sqrt{{x}^{2}+1}$)C.y=x-exD.y=$\frac{{e}^{2x}-1}{{e}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.滿足線性約束條件$\left\{\begin{array}{l}{2x+y≤3}\\{x+2y≤3}\\{x≥0,y≥0}\end{array}\right.$的目標(biāo)函數(shù)x+3y的最大值是(  )
A.$\frac{9}{2}$B.$\frac{3}{2}$C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)滿足f(x+6)=f(x),在(-3,3]上單調(diào)遞減,那么以下數(shù)中,最大的是( 。
A.f(8)B.f(-4.4)C.f(-7)D.f(-5$\sqrt{2}$)

查看答案和解析>>

同步練習(xí)冊答案