如圖所示,三棱臺(tái)ABC-A′B′C′中,AB:A′B′=1:2,則三棱錐C-A′B′C′,B-A′B′C,A′-ABC的體積之比為(  )
A、1:1:1
B、2:1:1
C、4:2:1
D、4:4:1
考點(diǎn):組合幾何體的面積、體積問(wèn)題
專題:計(jì)算題
分析:利用棱臺(tái)的底面相似,通過(guò)相似比求出幾何體的體積比,推出結(jié)果即可.
解答: 解:因?yàn)閹缀误w是三棱臺(tái),所以兩個(gè)底面相似,∵AB:A′B′=1:2,
∴SA′B′C′:SABC=1:4,設(shè)棱臺(tái)的高為h,
VC-A′B′C′
VA′-ABC
=
1
3
SA′B′C′•h
1
3
SABC•h
=1:4.
∴三棱錐C-A′B′C′,B-A′B′C,A′-ABC的體積之比為4:2:1.
故選:C.
點(diǎn)評(píng):本題考查幾何體的體積的比的求法,注意體積比與相似比關(guān)系的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={(x,y)||x|+|y|≤2,x,y∈Z},集合B={(x,y)|x2+y2≤2,x,y∈Z},在集合A中任取一個(gè)元素a,則a∈B的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(1,
1
3
)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式
(Ⅱ)求數(shù)列{
1
bnbn+1
}前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,1]上隨機(jī)取三個(gè)數(shù)x,y,z,事件A={(x,y,z)|x2+y2+z2<1},則P(A)=(  )
A、
1
8
B、
1
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=
1
2
AD=2
,O為AD上一點(diǎn),且 AO=1,平面外兩點(diǎn)P,E滿足PO=
3
2
,AE=1,EA⊥平面ABCD,PO∥EA.
(1)證明:BE∥平面PCD.
(2)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x+1-2t)的值域?yàn)镽,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在樣本的頻率分布直方圖中,共有11個(gè)小長(zhǎng)方形,若中間一個(gè)小長(zhǎng)方形的面積等于其他10個(gè)小長(zhǎng)方形的面積的和的
1
4
,且樣本容量為200,則中間一組有頻數(shù)為( 。
A、40B、32
C、0.2D、0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓截直線3x-y=0和直線3x+y=0所得弦長(zhǎng)分別為8,6,求動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案