【題目】某調(diào)查機構(gòu)對本市小學(xué)生課業(yè)負(fù)擔(dān)情況進(jìn)行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為x分鐘.有1000名小學(xué)生參加了此項調(diào)查,調(diào)查所得數(shù)據(jù)用程序框圖處理,若輸出的結(jié)果是680,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的頻率是(

A.680
B.320
C.0.68
D.0.32

【答案】D
【解析】做!
解:分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,可知:
該程序的作用是統(tǒng)計1000名中學(xué)生中,
平均每天做作業(yè)的時間不在0~60分鐘內(nèi)的學(xué)生的人數(shù).
由輸出結(jié)果為680
則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的人數(shù)為1000﹣680=320
故平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學(xué)生的頻率P= =0.32
所以答案是:0.32
【考點精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 =(4cosα,sinα), =(sinβ,4cosβ), =(cosβ,﹣4sinβ)
(1)若 ﹣2 垂直,求tan(α+β)的值;
(2)若β∈(﹣ ],求| |的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,點是橢圓上在第一象限的點,直線軸于點,直線軸于點.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;

(Ⅱ)是否存在點,使得直線 與直線平行?若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間(0, )上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)φ(x)=a為正常數(shù)

()f(x)=ln xφ(x),a=4,討論函數(shù)f(x)的單調(diào)性;

()g(x)=|ln x|+φ(x),且對任意x1x2(02],x1x2都有

()求實數(shù)a的取值范圍;

()求證:當(dāng)x(0,2],

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 的參數(shù)方程為 ,曲線 的參數(shù)方程為 ,設(shè)直線 與曲線 交于兩點 ,
(1)求 ;
(2)設(shè) 為曲線 上的一點,當(dāng) 的面積取最大值時,求點 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 t為參數(shù)), 為參數(shù)).
(1)化 的方程為普通方程;
(2)若 上的點對應(yīng)的參數(shù)為 ,Q為 上的動點,求PQ中點M到直線(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=x3與y=( x2的圖象的交點為(x0 , y0),則x0所在的區(qū)間是(
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2﹣2x﹣3=0的圓心坐標(biāo)及半徑分別為(
A.(﹣1,0)與
B.(1,0)與
C.(1,0)與2
D.(﹣1,0)與2

查看答案和解析>>

同步練習(xí)冊答案