6.化簡或求值:
(Ⅰ)2-2×(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}$+(3$\frac{1}{3}$)0;
(Ⅱ)lg22+lg2•lg5+$\sqrt{l{g}^{2}2-lg4+1}$.

分析 (I)利用指數(shù)冪的運算性質(zhì)即可得出.
(II)利用對數(shù)的運算性質(zhì)即可得出.

解答 解:(I)原式=$\frac{1}{4}×(\frac{3}{2})^{2×\frac{1}{2}}$-$(\frac{2}{3})^{3×\frac{1}{3}}$+1
=$\frac{3}{8}-\frac{2}{3}$+1
=$\frac{17}{24}$.
(II)原式=lg2(lg2+lg5)+1-lg2
=lg2+1-lg2
=1.

點評 本題考查了指數(shù)冪與對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)向量$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),定義一種向量運算$\overrightarrow{a}$?$\overrightarrow$=(a1b1,a2b2),已知向量$\overrightarrow{m}$=(2,$\frac{1}{2}$),$\overrightarrow{n}$=($\frac{π}{3}$,0),點P(x′,y′)在y=sinx的圖象上運動.點Q(x,y)是函數(shù)y=f(x)圖象上的動點,且滿足$\overrightarrow{OQ}=m?\overrightarrow{OP}$+n(其中O為坐標(biāo)原點),則函數(shù)y=f(x)的值域是( 。
A.$[{-\frac{1}{2},\frac{1}{2}}]$B.$({-\frac{1}{2},\frac{1}{2}})$C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)F1,F(xiàn)2分別是橢圓$\frac{x^2}{4}+{y^2}$=1的左、右焦點.
(1)若M是該橢圓上的一點,且∠F1MF2=120°,求△F1MF2的面積;
(2)若P是該橢圓上的一個動點,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合U={1,2,3,4},A={1,2,3},B={2},則A∩∁UB=( 。
A.{2}B.{2,3}C.{3}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=2|x|的定義域為[a,b],值域為[1,4],方程b=g(a)表示的圖形可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,最小值為2的是( 。
A.f(x)=x+$\frac{1}{x}$B.f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.y=$\sqrt{x-1}$+$\frac{1}{\sqrt{x-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時,$lgx+\frac{1}{lgx}≥2$B.當(dāng)x>0時,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$
C.當(dāng)x≥2時,$x+\frac{1}{x}≥2$D.當(dāng)0<x≤2時,$x-\frac{1}{x}$無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線a、b、c兩兩平行,但不共面,經(jīng)過其中2條直線的平面共有( 。
A.1個B.2個C.3個D.0或有無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={-1,0,1},B={x|-1≤x≤1},則A∩B=( 。
A.{-1,0,1}B.{x|-1≤x≤1}C.{-1,0}D.{0,1}

查看答案和解析>>

同步練習(xí)冊答案