(本題14分)一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是。
(Ⅰ)若袋中共有10個(gè)球,
(i)求白球的個(gè)數(shù);
(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望。
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于。并指出袋中哪種顏色的球個(gè)數(shù)最少。
(Ⅰ)(i)5
(ii)
(Ⅱ)證明見(jiàn)解析。
本題主要考查排列組合、對(duì)立事件、相互獨(dú)立事件的概率和隨機(jī)變量分布列和數(shù)學(xué)期望等概念,同時(shí)考查學(xué)生的邏輯思維能力和分析問(wèn)題以及解決問(wèn)題的能力.滿分14分。
(Ⅰ)解:(i)記“從袋中任意摸出兩個(gè)球,至少得到一個(gè)白球”為事件A,
設(shè)袋中白球的個(gè)數(shù)為,則,
得到,故白球有5個(gè)。
(ii)隨機(jī)變量的取值為0,1,2,3,分布列是
0 | 1 | 2 | 3 | |
的數(shù)學(xué)期望
。
(Ⅱ)證明:設(shè)袋中有個(gè)球,其中個(gè)黑球,由題意得,
所以,,故。
記“從袋中任意摸出兩個(gè)球,至少有1個(gè)黑球”為事件B,則
。
所以白球的個(gè)數(shù)比黑球多,白球個(gè)數(shù)多于,紅球的個(gè)數(shù)少于。
故袋中紅球個(gè)數(shù)最少。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市高三五校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)某超市為促銷(xiāo)商品,特舉辦“購(gòu)物有獎(jiǎng)100﹪中獎(jiǎng)”活動(dòng),凡消費(fèi)者在該超市購(gòu)物滿100元,享受一次搖獎(jiǎng)機(jī)會(huì),購(gòu)物滿200元,享受兩次搖獎(jiǎng)機(jī)會(huì),以此類推.搖獎(jiǎng)機(jī)的結(jié)構(gòu)如圖所示,將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣。小球在下落的過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎(jiǎng),獎(jiǎng)金為20元,落入B袋為二等獎(jiǎng),獎(jiǎng)金為10元,已知小球每次遇到黑色障礙物時(shí),向左、右兩邊下落的概率都是
(Ⅰ)求:搖獎(jiǎng)兩次,均獲得一等獎(jiǎng)的概率;
(Ⅱ)某消費(fèi)者購(gòu)物滿200元,搖獎(jiǎng)后所得獎(jiǎng)金為X元,試求X的分布列與期望;
(Ⅲ)若超市同時(shí)舉行購(gòu)物八八折讓利于消費(fèi)者活動(dòng)(打折后不再享受搖獎(jiǎng)),某消費(fèi)者剛好消費(fèi)200元,請(qǐng)問(wèn)他是選擇搖獎(jiǎng)還是選擇打折比較劃算.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com