是定義在R上的奇函數(shù),且當時,的值等于____

 

【答案】

-1

【解析】

試題分析:∵f(x)是定義在R上的奇函數(shù),∴f(-2)=-f(2),又∵當x>0時,f(x)=log2x,∴f(2)=log22=1,∴f(-2)=-1,故答案是-1.

考點:本試題主要考查了函數(shù)的奇偶性及函數(shù)值,深刻理解以上有關知識是解決問題的關鍵.。

點評:解決該試題的關鍵結合奇偶性能將f(-2)=-f(2)轉(zhuǎn)化代入已知關系式中解得。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=
2a-1a+1
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=數(shù)學公式,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省徐州三中高三(上)月考數(shù)學試卷(解析版) 題型:填空題

設函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=,則a的取值范圍是   

查看答案和解析>>

同步練習冊答案