已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若,是數(shù)列的前項和.
(I)求數(shù)列的通項公式;
(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);
(Ⅲ)設(shè)),使不等式
恒成立,求正整數(shù)的最大值

解:(I)∵在定義域內(nèi)有且只有一個零點
            ……1分
當(dāng)=0時,函數(shù)上遞增    故不存在,
使得不等式成立        …… 2分
綜上,得    …….3分

    …………4分                
(II)解法一:由題設(shè)
時,
時,數(shù)列遞增           
               可知
時,有且只有1個變號數(shù);    又
            ∴此處變號數(shù)有2個
綜上得數(shù)列共有3個變號數(shù),即變號數(shù)為3           ……9分
解法二:由題設(shè)            
當(dāng)時,令

時也有   
綜上得數(shù)列共有3個變號數(shù),即變號數(shù)為3      …………9分
(Ⅲ)時,

可轉(zhuǎn)化為   
設(shè),
則當(dāng),

.
所以,即當(dāng)增大時,也增大.
要使不等式對于任意的恒成立,
只需即可.因為,
所以.      即
所以,正整數(shù)的最大值為5.                             ……………13分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)高三考模擬考試數(shù)學(xué)試卷(文科) 題型:解答題

已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若,是數(shù)列的前項和.

(I)求數(shù)列的通項公式;

(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);

(Ⅲ)設(shè)),使不等式

恒成立,求正整數(shù)的最大值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若是數(shù)列的前項和.

(I)求數(shù)列的通項公式;

(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);

(Ⅲ)設(shè)),使不等式

 恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),在定義域內(nèi)有且只有一個零點,存在, 使得不等式成立. 若是數(shù)列的前項和.

(I)求數(shù)列的通項公式;

(II)設(shè)各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(n為正整數(shù)),求數(shù)列的變號數(shù);

(Ⅲ)設(shè)),使不等式

 恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省眉山市高考數(shù)學(xué)一模試卷(理數(shù))(解析版) 題型:解答題

已知函數(shù),在定義域內(nèi)連續(xù),則b-a=   

查看答案和解析>>

同步練習(xí)冊答案