7.設(shè)S表示所有大于-1的實(shí)數(shù)構(gòu)成的集合,確定所有的函數(shù):S→S,滿足以下兩個(gè)條件:
(1)對(duì)于S內(nèi)的所有x和y,f(x+f(y)+xf(y))=y+f(x)+yf(x);
(2)在區(qū)間-1<x<0與x>0的每一個(gè)內(nèi),$\frac{f(x)}{x}$是嚴(yán)格遞增的.
求滿足上述條件的函數(shù)的方程.

分析 令y=x可得f(x+f(x)+xf(x))=x+f(x)+xf(x),令x+f(x)+xf(x)=c,則f(c)=c,代入(1)可得f(2c+c2)=2c+c2.對(duì)c的符號(hào)進(jìn)行討論得出c=0即x+f(x)+xf(x)=0,從而得出f(x)的解析式.

解答 解:令y=x得f(x+f(x)+xf(x))=x+f(x)+xf(x),
令x+f(x)+xf(x)=c,則f(c)=c,
帶入(1)得f(2c+c2)=2c+c2.∵2+c>2+(-1)=1,∴2c+c2=c(2+c)與c同號(hào).
若c>0,則2c+c2>c,但$\frac{{f(2c+{c^2})}}{{2c+{c^2}}}=\frac{f(c)}{c}=1$,與$\frac{f(x)}{x}$在x>0時(shí)嚴(yán)格遞增相矛盾,
若c<0,同樣導(dǎo)出矛盾,
∴c=0,從而對(duì)一切x∈S有x+f(x)+xf(x)=0,
∴$f(x)=-\frac{x}{x+1}$.

點(diǎn)評(píng) 本題考查了抽象函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知角α的終邊經(jīng)過點(diǎn)P(2,-1),則$\frac{sinα-cosα}{sinα+cosα}$=   -3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y滿足$\left\{\begin{array}{l}x+y≤4\\ x-2y≥0\\ x+2y≥4\end{array}$則z=$\frac{y-4}{x}$的取值范圍是(  )
A.$(-∞,-\frac{3}{2}]∪[-1,+∞)$B.$(-∞,-\frac{5}{2}]∪[-1,+∞)$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$[-\frac{3}{2},-1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b(x<1)}\\{{3}^{x}(x≥1)}\end{array}\right.$,若$f(f(\frac{1}{2}))=9$,則實(shí)數(shù)b的值為( 。
A.$-\frac{3}{2}$B.$-\frac{9}{8}$C.$-\frac{3}{4}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知α∈(-$\frac{π}{2}$,$\frac{π}{2}$),β∈($-\frac{π}{2}$,$\frac{π}{2}$),若tanα,tanβ是方程x2+4$\sqrt{3}$x+5=0的兩根,則α+β=( 。
A.$-\frac{2}{3}π$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$-\frac{2}{3}π$或$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四邊形BCD和BCEG均為直角梯形,AD∥EG、CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=2AD,CE=2BG.求證:
(Ⅰ)EC⊥CD;
(Ⅱ)求證:AG∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個(gè)正方體截取兩個(gè)全等的小正三棱錐后得到的幾何體的主視圖和俯視圖如圖,則該幾何體的左視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{3x}{{\sqrt{-1-x}}}$,其定義域?yàn)锳.
(1)求A;
(2)求f(-2)的值;
(3)判斷0與A的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義新運(yùn)算a&b為:a&b=$\left\{\begin{array}{l}{a}&{a≤b}\\&{a>b}\end{array}$,則函數(shù)f(x)=sinx&cosx 的值域?yàn)閇-1,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案