畫出函數(shù)圖象:y=x2-2,x∈Z且|x|≤2.
考點:函數(shù)圖象的作法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的定義域,求出函數(shù)的值域,然后畫出圖形.
解答:解:y=x2-2,x∈Z且|x|≤2,
所以x=-2,-1,0,1,2;
對應(yīng)y的值為:2,-1,-2,-1,2.
圖象如圖:
點評:本題考查函數(shù)的圖象的畫法,函數(shù)的定義域是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是半徑為2的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值為(  )
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD為矩形,P為平面ABCD外一點,且PA⊥平面ABCD,G為△PCD的重心,若
AG
=x
AB
+y
AD
+z
AP
,則( 。
A、x=
1
3
,y=
1
3
,z=
2
3
B、x=
1
3
,y=
2
3
,z=
1
3
C、x=-
1
3
,y=
2
3
,z=
1
3
D、x=
2
3
,y=
1
3
,z=
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
,
b
滿足|3
a
-
b
|≤1,則
a
b
的最小值是( 。
A、-
1
6
B、-
1
12
C、-
1
18
D、-
1
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用“五點法”畫出函數(shù)y=2cos(2x+
π
3
)
在一個周期上的圖象.(要求列表描點作圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用“五點法”在如圖所示的坐標(biāo)紙上作出函數(shù)y=2-sinx,x∈[-
π
2
,
2
]
的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2tan(-2x+
π
3
),求定義域、值域和單調(diào)區(qū)間,并在區(qū)間內(nèi)畫出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(4x-
π
6
)圖象上各點的橫坐標(biāo)伸長到原來的2倍,再向左平移
π
4
個單位,縱坐標(biāo)不變,所得函數(shù)圖象的一條對稱軸的方程是( 。
A、x=
π
12
B、x=
π
6
C、x=
π
3
D、x=-
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,0,-1),則下列向量中與
a
所成夾角為120°的是(  )
A、(1,0,1)
B、(1,-1,0)
C、(0,-1,-1)
D、(-1,1,0)

查看答案和解析>>

同步練習(xí)冊答案