已知函數(shù)的導函數(shù)是,處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設是曲線上的任意一點.當時,求直線OM斜率的最小值,據(jù)此判斷的大小關系,并說明理由.

(Ⅰ)極大值為,極小值為;(Ⅱ) ;(Ⅲ)直線斜率的最小值為4,

解析試題分析:(Ⅰ)根據(jù)題意,先求m值,設原函數(shù)解析式,由,得原函數(shù)解析式,再求導函數(shù),列表求極值;(Ⅱ)由(Ⅰ)知函數(shù)在各個區(qū)間上的單調(diào)性,對分情況討論,分兩種情況,分別找出這兩種情況下函數(shù)的最大值,使得成立,從而求出的取值范圍;(Ⅲ)當時,求直線OM斜率表達式,得斜率最小值為4,據(jù)此判斷,,再利用導數(shù)的證明當時,函數(shù)大于0 恒成立.
試題解析:解:(I)依題意,,解得,               1分
由已知可設,因為,所以,
,導函數(shù).            3分
列表:



1
(1,3)
3
(3,+∞)

+
0
-
0
+


極大值4
 ↘
極小值0

由上表可知處取得極大值為,
處取得極小值為.                 5分
(Ⅱ)①當時,由(I)知

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù)
(1)求曲線在點處的切線方程;  (2)當時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)為常數(shù))
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為函數(shù)圖象上一點,O為坐標原點,記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)m的取值范圍;
(2)當 時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且處的切線方程為.
(1)求的解析式;
(2)證明:當時,恒有
(3)證明:若,,且,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)在區(qū)間[1,3]上的極值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若在實數(shù)集R上單調(diào)遞增,求的范圍;
(Ⅱ)是否存在實數(shù)使上單調(diào)遞減.若存在求出的范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線處的切線互相垂直,求的值.

查看答案和解析>>

同步練習冊答案