【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,當(dāng)時,求的值;

(2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點?若過定點則求出該定點,若不存在則說明理由;

(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.

【答案】(1);(2)見解析;(3).

【解析】試題分析:1)若直線l與圓O交于不同的兩點A,B,當(dāng)時,點Ol的距離,由此求k的值;
2)求出直線CD的方程,即可,探究:直線CD是否過定點;
3)求出四邊形EGFH的面積,利用配方法,求出最大值.

試題解析:

(1)的距離.

(2)由題意可知: 四點共圓且在以為直徑的圓上,設(shè).

其方程為: ,

,

在圓

,即,

,得

直線過定點.

(3)設(shè)圓心到直線的距離分別為.

,

.

.

當(dāng)且僅當(dāng),即時,取“

四邊形的面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面是邊長為1的正方形,側(cè)棱底面,且, 是側(cè)棱上的動點.

(1)求四棱錐的表面積;

(2)是否在棱上存在一點,使得平面;若存在,指出點的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 底面,該四棱錐的正視圖和側(cè)視圖均為腰長為6的等腰直角三角形.

(1)畫出相應(yīng)的俯視圖,并求出該俯視圖的面積;

(2)求證: ;

(3)求四棱錐外接球的直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了調(diào)查喜歡語文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:

調(diào)查統(tǒng)計

不喜歡語文

喜歡語文

13

10

7

20

為了判斷喜歡語文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值k= ≈4.844,因為k≥3.841,根據(jù)下表中的參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜歡語文學(xué)科與性別有關(guān)系,那么這種判斷出錯的可能性為(
A.95%
B.50%
C.25%
D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查大學(xué)生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量

頻數(shù)

頻率

0至5個

0

0

6至10個

30

0.3

11至15個

30

0.3

16至20個

a

c

20個以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)以這100個人的樣本數(shù)據(jù)估計武漢市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學(xué)生(數(shù)量很大)中隨機(jī)抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x2+1. (Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若a<0,且對任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的不等式x2+(a﹣1)x+a2≤0的解集為;命題q:函數(shù)f(x)=(4a2+7a﹣1)x是增函數(shù),若¬p∧q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象( )

A. 每個點的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),再向左平移個單位

B. 每個點的橫坐標(biāo)縮短到原來的2倍(縱坐標(biāo)不變),再向左平移個單位

C. 先向左平移個單位,再把所得各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)

D. 先向左平移個單位,再把所得各點的橫坐標(biāo)伸長到原來的(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(文科)設(shè)函數(shù)f(x)=x2﹣2ax﹣8a2(a>0),記不等式f(x)≤0的解集為A.
(1)當(dāng)a=1時,求集合A;
(2)若(﹣1,1)A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案