14.已知焦點在x軸上的橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1的離心率e=$\frac{\sqrt{10}}{10}$,則實數(shù)m=$\sqrt{10}$.

分析 橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1焦點在x軸上,得a2=m2,b2=9,e2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{m}^{2}-9}{{m}^{2}}=\frac{1}{10}$⇒m的值.

解答 解:∵橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1焦點在x軸上,
∴a2=m2,b2=9,e2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{m}^{2}-9}{{m}^{2}}=\frac{1}{10}$⇒m=$\sqrt{10}$,
故答案為:$\sqrt{10}$.

點評 本題考查了橢圓的離心率,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=${log_{\frac{1}{2}}}$x-(${\frac{1}{2}$)x的零點個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由曲線y=x2與直線y=3x所圍成的圖形的面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某公司有60萬元資金,計劃投資甲、乙兩個項目,按要求對項目甲的投資不小于對項目乙投資的$\frac{2}{3}$倍,且對每個項目的投資不能低于5萬元.對項目甲每投資1萬元可獲得0.4萬元的利潤,對項目乙每投資1萬元可獲得0.6萬元的利潤.該公司如何正確規(guī)劃投資,才能在這兩個項目上共獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex+a-lnx.
(1)若函數(shù)f(x)在x=1處取得極值,求實數(shù)a的值;
(2)當(dāng)a≥-2時,證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,且滿足a1+a5=12,S4=20;數(shù)列{bn}滿足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(x+a)-x有且只有一個零點,其中a>0.
(1)求a的值;
(2)設(shè)函數(shù)h(x)=f(x)+x,證明:對?x1,x2∈(-1,+∞)(x1≠x2),不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}>\sqrt{{x_1}{x_2}+{x_1}+{x_2}+1}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓的一個焦點與兩頂點為等邊三角形的一個頂點,則該橢圓的長軸長是短軸長的(  )
A.$\sqrt{3}$倍B.2倍C.$\sqrt{2}$倍D.$\frac{3}{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項均為正數(shù)的等比數(shù)列{an}的首項a1=2,Sn為其前n項和,若5S1,S3,3S2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,記數(shù)列{cn}的前n項和Tn.若${T_n}≤\frac{2014}{2015}$,求整數(shù)n的最大值.

查看答案和解析>>

同步練習(xí)冊答案