17.如果對(duì)于函數(shù)f(x)定義域內(nèi)任意的兩個(gè)自變量的值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),且存在兩個(gè)不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).
則 ①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,
四個(gè)函數(shù)中為不嚴(yán)格增函數(shù)的是①③,若已知函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},B⊆A,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)有9個(gè).

分析 由已知中不嚴(yán)格的增函數(shù)的定義,逐一分析給定的四個(gè)函數(shù),是否滿足定義,可得結(jié)論;再根據(jù)不嚴(yán)格的增函數(shù)的定義,逐一列舉出滿足條件的函數(shù)g(x),可得答案.

解答 解:由已知中:函數(shù)f(x)定義域內(nèi)任意的兩個(gè)自變量的值x1,x2,
當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),
且存在兩個(gè)不相等的自變量值y1,y2,使得f(y1)=f(y2),
就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).
①$f(x)=\left\{\begin{array}{l}x,x≥1\\ 0,-1<x<1\\ x,x≤-1\end{array}\right.$,滿足條件,為定義在R上的不嚴(yán)格的增函數(shù);
②$f(x)=\left\{\begin{array}{l}1,\;x=-\frac{π}{2}\\ sinx,-\frac{π}{2}<x≤\frac{π}{2}\end{array}\right.$,當(dāng)x1=-$\frac{π}{2}$,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),f(x1)>f(x2),故不是不嚴(yán)格的增函數(shù);
③$f(x)=\left\{\begin{array}{l}1,x≥1\\ 0,-1<x<1\\-1,x≤-1\end{array}\right.$,滿足條件,為定義在R上的不嚴(yán)格的增函數(shù);
④$f(x)=\left\{\begin{array}{l}x,\;x≥1\\ x+1,x<1\end{array}\right.$,當(dāng)x1=$\frac{1}{2}$,x2∈(1,$\frac{3}{2}$),f(x1)>f(x2),故不是不嚴(yán)格的增函數(shù);
故已知的四個(gè)函數(shù)中為不嚴(yán)格增函數(shù)的是①③;
∵函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},B⊆A,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),
則滿足條件的函數(shù)g(x)有:
g(1)=g(2)=g(3)=1,
g(1)=g(2)=g(3)=2,
g(1)=g(2)=g(3)=3,
g(1)=g(2)=1,g(3)=2,
g(1)=g(2)=1,g(3)=3,
g(1)=g(2)=2,g(3)=3,
g(1)=1,g(2)=g(3)=2,
g(1)=1,g(2)=g(3)=3,
g(1)=2,g(2)=g(3)=3,
故這樣的函數(shù)共有9個(gè),
故答案為:①③;9.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性的性質(zhì),求解本題的關(guān)鍵是正確理解所給的定義,結(jié)合函數(shù)定義中對(duì)應(yīng)的思想,對(duì)可能的函數(shù)進(jìn)行列舉,得出可能函數(shù)的種數(shù),本題比較抽象,解題時(shí)要注意對(duì)其情況分類討論,不重不漏,本題易因?yàn)榉诸惒磺,或者考慮情況不嚴(yán)密出錯(cuò),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,拋物線C1:x2=2py(p>0)與橢圓C2:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)交點(diǎn)為T(mén)($\frac{4}{3}$,$\frac{1}{3}$),F(xiàn)(1,0)為橢圓C2的右焦點(diǎn).
(1)求拋物線C1與橢圓C2的方程;
(2)設(shè)M(x0,y0)是拋物線C1上任意一點(diǎn),過(guò)M作拋物線C1的切線l,直線l與橢圓C2,交于A、B兩點(diǎn),定點(diǎn)N(0,$\frac{2}{3}$),求△NBA的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.?ABCD的一組鄰邊所在直線的方程分別為x+y+1=0與3x-y+3=0,對(duì)角線AC,BD的交點(diǎn)坐標(biāo)為(2,1),求另外兩邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若x∈R,那么$\frac{x}{x+1}$是正數(shù)的充要條件是( 。
A.x>0B.x<-1C.x>0或x<-1D.-1<x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知各項(xiàng)均為正數(shù)的無(wú)窮數(shù)列{an}滿足anan+2=an+12-t2(n∈N*,t為常數(shù)).
(1)設(shè){an}是首項(xiàng)為1的等差數(shù)列,當(dāng)t=1時(shí),求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an+t}是等比數(shù)列,求t的值;
(3)若a2=a1+t,求證:數(shù)列{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列判斷不正確的是( 。
A.若ξ-B(4,0.25),則Eξ=1
B.命題“?x∈R,x2≥0”的否定是“?x0∈R,x02<0”
C.從勻速傳遞的產(chǎn)品生產(chǎn)線上,檢查人員每隔5分鐘從中抽出一件產(chǎn)品檢查,這樣的抽樣是系統(tǒng)抽樣
D.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,這組數(shù)據(jù)的中位數(shù)與眾數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某氣象站觀測(cè)點(diǎn)記錄的連續(xù)4天里,AQI指數(shù)M與當(dāng)天的空氣水平可見(jiàn)度y(單位cm)的情況如下表1:
M900700300100
y0.53.56.59.5
哈爾濱市某月AQI指數(shù)頻數(shù)分布如下表2:
M[0,200](200,400](400,600](600,800](800,1000]
頻數(shù)361263
(1)設(shè)x=$\frac{M}{100}$,根據(jù)表1的數(shù)據(jù),求出y關(guān)于x的回歸方程;
(參考公式:$\hat y=\hat bx+\hat a$;其中$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\overline a=\overline y-\hat b\overline x$)
(2)小張開(kāi)了一家洗車店,經(jīng)統(tǒng)計(jì),當(dāng)M不高于200時(shí),洗車店平均每天虧損約2000元;當(dāng)M在200至400時(shí),洗車店平均每天收入約4000元;當(dāng)M大于400時(shí),洗車店平均每天收入約7000元;根據(jù)表2估計(jì)小張的洗車店該月份平均每天的收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.當(dāng)n≥3,n∈N時(shí),對(duì)于集合M={1,2,3,…,n},集合M的所有含3個(gè)元素的子集分別表示為N1,N2,N3,…NM(n)-1,NM(n),其中M(n)表示集合M的含3個(gè)元素的子集的個(gè)數(shù).設(shè)pi為集合Ni中的最大元素,qi為集合Ni中的最小元素,1≤i≤M(n),記P=p1+p2+…+pM(n)-1+pM(n),Q=q1+q2+…qM(n)-1+qM(n)
(1)當(dāng)n=4時(shí),分別求M(4),P,Q;
(2)求證:P=3Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如表:
    xx1$\frac{1}{3}$x2$\frac{7}{3}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B0$\sqrt{3}$0-$\sqrt{3}$0
(Ⅰ)請(qǐng)求出表中的x1,x2,x3的值,并寫(xiě)出函數(shù)f(x)的解析式;
(Ⅱ)將f(x)的圖象向右平移$\frac{2}{3}$個(gè)單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0,m](3<m<4)上的圖象的最高點(diǎn)和最低點(diǎn)分別為M,N,求向量$\overrightarrow{NM}$與$\overrightarrow{ON}$夾角θ的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案