f()是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示:令g()=af()+b,則下 列關于函數(shù)g()的敘述正確的是(    )

           

A.若a<0,則函數(shù)g()的圖象關于原點對稱.

B.若a=-1,-2<b<0,則方程g()=0有大于2的實根.

C.若a≠0,b=2,則方程g()=0有兩個實根.

D.若a≥1,b<2,則方程g()=0有三個實根

 

【答案】

B

【解析】

試題分析:奇函數(shù)的圖象關于原點對稱;當a≠0時af(x)與f(x)有相同的奇偶性;f(x)+b的圖象可由f(x)上下平移得到.充分利用以上知識點逐項分析即可解答解:①若a=-1,b=1,則函數(shù)g(x)不是奇函數(shù),其圖象不可能關于原點對稱,所以選項A錯誤;②當a=-1時,-f(x)仍是奇函數(shù),2仍是它的一個零點,但單調性與f(x)相反,若再加b,-2<b<0,則圖象又向下平移-b個單位長度,所以g(x)=-f(x)+b=0有大于2的實根,所以選項B正確;③若a=1,b=2,則g(x)=f(x)+2,其圖象由f(x)的圖象向上平移2個單位長度,那么g(x)只有兩個零點,所以g(x)=0只有兩個實根,所以選項C錯誤;④若a=1,b=-3,則g(x)的圖象由f(x)的圖象向下平移3個單位長度,它只有1個零點,即g(x)=0只有一個實根,所以選項D錯誤.故選B

考點:奇函數(shù)

點評:本題考查奇函數(shù)的圖象特征及函數(shù)af(x)與f(x)的奇偶性關系,同時考查由f(x)到f(x)+b的圖象變化。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:

①f(-1)=f(1)=0;

②對任意u,v∈[-1,1]都有|f(u)-f(v)|≤|u-v|.

(1)證明對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;

(2)證明對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤1;

(3)在區(qū)間[-1,1]上是否存在滿足條件的奇函數(shù)y=f(x),且使得

若存在,請舉一例;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示.令g(x)=af(x)+b,則下列關于函數(shù)g(x)的敘述正確的是(    )

A.若a<0,則函數(shù)g(x)的圖象關于原點對稱

B.若a=-1,-2<b<0,則方程g(x)=0有大于2的實根

C.若a≠0,b=2,則方程g(x)=0有兩個實根

D.若a≥1,b<2,則方程g(x)=0有三個實根

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義在區(qū)間[-,]上的偶函數(shù),且x∈[0,]時,f(x)=-x2-x+5.(1)求函數(shù)f(x)的解析式;

(2)若矩形ABCD的頂點A,B在函數(shù)y=f(x)的圖象上,頂點C,D在x軸上,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在區(qū)間上以2為周期的函數(shù),對,用表示區(qū)間已知當時,f(x)=x2.

(1)求f(x)在上的解析表達式;

(2)對自然數(shù)k,求集合不等的實根}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)是定義在區(qū)間U上的增函數(shù),且f(x)>0,則下列函數(shù):①y=1-f(x);②y=;③(x);④y=-中為增函數(shù)的序號是    .

查看答案和解析>>

同步練習冊答案