20.已知函數(shù)f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{3}$).
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

分析 (I)利用和差角(輔助角)公式,將函數(shù)化為正弦型函數(shù)的形式,再由誘導(dǎo)公式可得f(x)=2cos2x,將x=$\frac{π}{6}$代入可得答案;
(Ⅱ)由 (I)得:f(x)=2cos2x,結(jié)合余弦函數(shù)的圖象和性質(zhì),可得函數(shù)的最小正周期和單調(diào)遞增區(qū)間.

解答 解:(Ⅰ)∵f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{3}$)=2sin[(2x+$\frac{π}{3}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{2}$)=2cos2x.
∴f($\frac{π}{6}$)=2cos(2×$\frac{π}{6}$)=2cos$\frac{π}{3}$=1;
(Ⅱ)由 (I)得:f(x)=2cos2x,
∵ω=2,
∴周期T=π,
由2kπ-π≤2x≤2kπ,k∈Z得:kπ-$\frac{π}{2}$≤x≤kπ,k∈Z
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{2}$,kπ],k∈Z

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)求值,余弦型函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若f(x)=x+$\frac{1}{x}$,則下列式子中正確的是(  )
A.f(-1)=0B.f(0)=0C.f(-x)=f(x)D.f($\frac{1}{x}$)=f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=(2a-1)x+b在(-∞,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{2}$)(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.正四棱臺(tái)的上、下底面邊長(zhǎng)分別為2、4,側(cè)棱長(zhǎng)為4,求正四棱臺(tái)的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}a{x^2}+x-1(x>2)\\ ax-1(x≤2)\end{array}$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.-$\frac{1}{4}$≤a<0B.a≤-$\frac{1}{4}$C.-1≤a≤-$\frac{1}{4}$D.a≤-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知全集U={x|x-2≥0或x≤1},A={x|x2-4x+3>0},B=(-∞,1]∪(2,+∞),求A∩B及∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.$\int_{-2}^2{\frac{1}{x+3}}dx$=ln5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,則Z=2x+y-1的最大值為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知不等式x2-(1+a)x+a<0;
(1)若該不等式的解集為(1,2),求a的值;
(2)若a∈R,解該不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案