【題目】設(shè)數(shù)列的首項(xiàng),且時(shí),,,,.
(Ⅰ)若,求,,,.
(Ⅱ)若,證明:.
(Ⅲ)若,求所有的正整數(shù),使得對(duì)于任意,均有成立.
【答案】詳見(jiàn)解析
【解析】
試題(I)由a1=a且0<a<1代入得到a2;a2∈(3,4),代入(2)得到a3;a3∈(0,1),代入(1)得a4;a4∈(3,4),代入(2)得到a4;a5∈(0,1),代入(1)所以求得a5;
(II)分兩種情況①當(dāng)0<an≤3時(shí)和②當(dāng)3<an<4得到0<an+1<4得證;
(III)分三種情況若0<a<1;1≤a<2;若a=2,由特殊值得到k的特值,寫(xiě)出k的一般的取值即可.
試題解析:
(Ⅰ)∵得,∴,
∵,∴,
,∴,
,∴.
(Ⅱ)證明:①當(dāng)時(shí),,∴,
②當(dāng),,∴,
綜上,時(shí),.
(Ⅲ)①若,由Ⅰ知,所以,
∴ 當(dāng)時(shí),對(duì)所有的,成立.
②若,則,且,
,∴,
∴ 當(dāng)時(shí),對(duì)所有的,成立,
③若,則,∴,
∴ 時(shí),對(duì)所有的,成立,
綜上,若,則,,
若,則,,
若,則,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)向量, ,其中為的兩個(gè)內(nèi)角.
(1)若,求證: 為直角;
(2)若,求證: 為銳角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實(shí)數(shù)的取值范圍.
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,PD//MA,MA⊥AD,PM⊥平面CDM,MA=ADPD=1.
(1)求證:平面ABCD⊥平面AMPD;
(2)求三棱錐A﹣CMP的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的焦點(diǎn)是橢圓: ()的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線在軸上的截距為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來(lái)找圖書(shū)管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉?duì)象.劉老師猜了三句話:“①?gòu)埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對(duì)了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫(xiě)字母即可.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)是邊長(zhǎng)為2的正三角形的三邊上的動(dòng)點(diǎn),則的取值范圍為______
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com