已知{an}是由非負(fù)整數(shù)組成的無(wú)窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng),…的最小值記為Bn,dn=An-Bn.
(I)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對(duì)任意n∈N*,),寫(xiě)出d1,d2,d3,d4的值;
(II)設(shè)d為非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}為公差為d的等差數(shù)列;
(III)證明:若a1=2,dn=1(n=1,2,3…),則{an}的項(xiàng)只能是1或2,且有無(wú)窮多項(xiàng)為1.
(I) ,. (II)見(jiàn)解析 (III)見(jiàn)解析
【解析】充分利用題目所給信息進(jìn)行反復(fù)推理論證.要證明充要條件,需要充分性和必要性?xún)蓚(gè)方面敘述.
(I) ,.
(II) 充分性:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081612483344796269/SYS201308161249494196742853_DA.files/image003.png">是公差為的等差數(shù)列,且,所以,
因此,.
必要性:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081612483344796269/SYS201308161249494196742853_DA.files/image009.png">,所以.
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081612483344796269/SYS201308161249494196742853_DA.files/image011.png">,所以.
于是.
因此, ,即是公差為的等差數(shù)列.
(III)因?yàn)閍1=2,dn=1,所以,,
故對(duì)任意,.
假設(shè),中存在大于2的項(xiàng),
設(shè)m為滿(mǎn)足的的最小正整數(shù),
則,并且對(duì)任意,
又因?yàn)閍1=2,所以,且.
于是.
故,與矛盾.
所以對(duì)于任意,都有,即非負(fù)整數(shù)數(shù)列的各項(xiàng)只能為1或2,.
因?yàn)閷?duì)任意,,
所以.
故
因此,對(duì)于任意正整數(shù),存在滿(mǎn)足,且,即數(shù)列{an}有無(wú)窮多項(xiàng)為1.
【考點(diǎn)定位】本題考查了數(shù)列的周期性,等差數(shù)列.考查了推理論證能力和數(shù)據(jù)處理能力.試題難度較大,解答此題,需要非常強(qiáng)的分析問(wèn)題和解決問(wèn)題的能力.本題是一個(gè)信息題,考查了學(xué)生對(duì)知識(shí)的遷移能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
…,用反證法證明a3=2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com