8.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,Q為AD的中點,點M在線段PC上且PM=tPC(t>0),試確定實數(shù)t的值,使得PA∥平面MQB.

分析 連AC交BQ于N,交BD于O,點M在線段PC上,PM=tPC,實數(shù)t=$\frac{1}{3}$的值,由PA∥平面MQB,利用PA∥MN,說明三角形相似,求出t=$\frac{1}{3}$.

解答 解:當(dāng)t=$\frac{1}{3}$時,使得PA∥平面MQB.
連AC交BQ于N,交BD于O,
則O為BD的中點,又∵BQ為△ABD邊AD上中線,
∴N為三角形ABD的重心,可得:$\frac{AN}{NO}=2$,$\frac{AN}{AC}=\frac{1}{3}$,
∴PA∥平面MQB,PA?平面PAC,平面PAC∩平面MQB=MN,
∴PA∥MN,
$\frac{PM}{PC}$=$\frac{AN}{AC}$=$\frac{1}{3}$即:PM=$\frac{1}{3}$PC,t=$\frac{1}{3}$.

點評 本題主要考查了直線與平面平行的判定,考查了空間想象能力,邏輯思維能力以及推理論證能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=alnx+ex(a>0),若f(3x)<f(x2+a),求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|x2-5x+4>0},B={x|x2-x-6≤0},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,設(shè)向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,則角A的大小是( 。
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an•log2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在數(shù)列{an}中,a1=1,an=$\frac{{{a_{n-1}}}}{{c{a_{n-1}}+1}}$(c為常數(shù),n∈N*,n≥2),又a1,a2,a5成公比不為l的等比數(shù)列.
(I)求證:{$\frac{1}{a_n}$}為等差數(shù)列,并求c的值;
(Ⅱ)設(shè){bn}滿足b1=$\frac{2}{3}$,bn=an-1an+1(n≥2,n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在(-∞,0)∪(0,+∞)的奇函數(shù),當(dāng)x∈(-∞,0)時,f(x)=x2+2x,那么當(dāng)x∈(0,+∞)時,f(x)=-x2+2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=|x|-$\frac{1}{1+{x}^{2}}$+1,
(1)證明:函數(shù)f(x)在[0,+∞)上單調(diào)遞增.
(2)解不等式f(x)>f(2x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a=lnπ,b=logπe,c=logtan1sin1,則(  )
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

同步練習(xí)冊答案