命題“設(shè)a、b、c∈R,若ac2>bc2,則a>b”的逆命題是
命題(填:真或假)
分析:先寫出命題“設(shè)a、b、c∈R,若ac2>bc2,則a>b”的逆命題,再判斷該逆命題的真假.
解答:解:命題“設(shè)a、b、c∈R,若ac2>bc2,則a>b”的逆命題是:
設(shè)a、b、c∈R,若a>b,則ac2>bc2
當(dāng)c=0時(shí),該逆命題不成立,
∴命題“設(shè)a、b、c∈R,若ac2>bc2,則a>b”的逆命題是假命題.
故答案為:假.
點(diǎn)評(píng):本題考查四種命題的真假關(guān)系,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、原命題:“設(shè)a、b、c∈R,若a>b,則ac2>bc2”.在原命題以及它的逆命題,否命題、逆否命題中,真命題共有
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、原命題:“設(shè)a、b、c∈R,若a>b,則ac2>bc2”,以及它的逆命題、否命題、逆否命題中,真命題共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題:
①設(shè)
a
、
b
c
是互不共線的非零向量,則(
a
b
c
-(
c
a
b
=
0

②“a=1”是“函數(shù)f(x)=lg(ax+1)在(0,+∞)單調(diào)遞增”的充分不必要條件;
③已知α,β∈R,則“α=β”是“tanα=tanβ”的充要條件;
④函數(shù)f(x)=2x-x2的在(1,3)上至少一個(gè)零點(diǎn);
x-1
(x-2)≥0
的解集為[2,+∞);
⑥函數(shù)y=x3在x=0處切線不存在.
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

原命題:“設(shè)a、b、c∈R,若a>b,則ac2>bc2”則它的逆命題的真假為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

原命題:“設(shè)a、b、c∈R,若ac2>bc2,則a>b”的逆命題、否命題、逆否命題中真命題共有(   )

A.0個(gè)    B.1個(gè)    C.2個(gè)    D.3個(gè)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案