如圖,直三棱柱中,,∠BAC=90°,D為棱的中點(diǎn).

(1)求異面直線所成的角;

(2)求證:平面⊥平面ADC.

答案:
解析:

解:(1)聯(lián)結(jié)于點(diǎn)E,取AD中點(diǎn)F,聯(lián)結(jié)EF,則EF∥

∴直線EF與所成的角就是異面直線所成的角.

設(shè)AB=a,

△CEF中,,,

在直三棱柱中,∠BAC=90°,則AD⊥AC.

,

∴異面直線所成的角為

證明:(2)在直三棱柱中,∠BAC=90°,

∴AC⊥平面

,,

,于是

.又,

∴平面


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年?yáng)|城區(qū)期末理)(14分)

如圖,在直三棱柱中,.

(Ⅰ)求證:;

(Ⅱ)求二面角的大小;

(Ⅲ)在上是否存在點(diǎn),使得∥平面,若存在,試給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆天津市高二第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

 (13分) 如圖,直三棱柱中, ,,.

(Ⅰ)證明:;

(Ⅱ)求二面角的正切值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直三棱柱中,,是棱的中點(diǎn).

(Ⅰ)證明:

(Ⅱ)求二面角的余弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東惠陽(yáng)一中實(shí)驗(yàn)學(xué)校高二6月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)如圖, 在直三棱柱中,,

,點(diǎn)的中點(diǎn).

⑴求證:;

⑵求證:平面

⑶求二面角的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆天津市等三校高二第一學(xué)期期末聯(lián)合考試文科數(shù)學(xué)試卷 題型:解答題

如圖, 在直三棱柱中,,,點(diǎn)的中點(diǎn),

(1)求證:;

(2)求證:;

(3)求直線與平面所成角的正切值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案