已知為橢圓的左,右焦點,為橢圓上的動點,且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點。試判斷的大小是否為定值,并說明理由.
(I) (II)定值.
【解析】
試題分析:(I)M是橢圓上的點, 可以轉(zhuǎn)化為關(guān)于的二次函數(shù),利用二次函數(shù)求最值,可求得橢圓方程中的參數(shù)和;(II)利用直線與圓錐曲線相交的一般方法,將直線方程與橢圓方程聯(lián)立方程組,利用韋達(dá)定理,求,繼而判定是否為定值.
試題解析:(I),設(shè),則,因為點在橢圓上,則,,又因為,所以當(dāng)時,取得最小值,當(dāng)時,取得最大值,從而求得,故橢圓的方程為;
(II)設(shè)直線的方程為,
聯(lián)立方程組可得,化簡得:,
設(shè),則,又, ,由得,
所以,所以,所以為定值.
考點: 1、待定系數(shù)法求橢圓方程; 2、二次函數(shù)求最值 ; 3、直線與圓錐曲線相交的綜合應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦
點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.
(1)求雙曲線的方程;
(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com