,且
(1)求的最小值及對應(yīng)的x值;
(2)若不等式的解集記為A,不等式的解集記為B,求
20.(1) ∵
,∴
a = 2或a = 1(舍)····································································· 2分
又∵
       ∴b=" 2······························································" 4分
,
∴當(dāng)時,的最小值為······························· 6分
(2) 由


,即······································· 9分


······································································· 11分
···································································· 12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),那么(  )
A.當(dāng)x∈(1,+∞)時,函數(shù)單調(diào)遞增
B.當(dāng)x∈(1,+∞)時,函數(shù)單調(diào)遞減
C.當(dāng)x∈(-∞,-1)時,函數(shù)單調(diào)遞增
D.當(dāng)x∈(-∞,3)時,函數(shù)單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上遞減,則a的取值范圍是(     )
A.B.(-∞,-3)C.(-∞,-3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù)f(x)=mx2+nx+t的圖像過原點,g(x)=ax3+bx?3(x>0),f(x), g(x)的導(dǎo)函數(shù)為,g¢(x),且="0," =?2,f(1)="g(1)," =g¢(1).
(Ⅰ)求函數(shù)f(x),g(x)的解析式;
(Ⅱ)求F(x)=f(x)?g(x)的極小值;
(Ⅲ)是否存在實常數(shù)k和m,使得f(x)³kx+m和g(x)£kx+m成立?若存在,求出k和m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中,為實常數(shù)).
(Ⅰ)若,求的值(用表示);
(Ⅱ)若對于恒成立,求實數(shù)m的取值范圍(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)上是增函數(shù),則實數(shù)的取值范圍為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,上是減函數(shù),則實數(shù)a的范圍是(  )
A.a(chǎn)≥-3B.a(chǎn)≤-3C.a(chǎn)≥3D.a(chǎn)≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖象開口向下,對稱軸為x=1,圖象與x軸的兩個交點中,一個交點的橫坐標(biāo),則以下結(jié)論中:
①abc>0;  ②a+b+c<0;  ③a+c<b;  ④3b>2c; ⑤3a+c>0。
正確的序號是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=ax2+bx+c(x∈R)的部分對應(yīng)值如下表:
x
-3
-2
-1
0
1
2
3
4
y
6
0
-4
-6
-6
-4
0
6
 
則不等式ax2+bx+c>0的解集是   ■    

查看答案和解析>>

同步練習(xí)冊答案