已知{an}為等比數(shù)列,它的前n項和為Sn,且S3,S2,S4成等差數(shù)列,則數(shù)列{an}的公比q=
-2
-2
分析:用分類討論的思想分別對q=1和q≠1進行考慮,應用等差中項的定義構(gòu)造等式2S2=S3+S4進行求解.
解答:解:由題意,當公比q=1時,有S3=3a1,S2=2a1,S4=4a1,可得2S2≠S3+S4
故S3,S2,S4不可能成等差數(shù)列,故不合題意;
當q≠1時,有2
a1(1-q2)
1-q
=
a1(1-q3)
1-q
+
a1(1-q4)
1-q
,化簡得
q3+2q2=0,解得q=-2或q=0(舍去)
故答案為:-2
點評:本題考查等比數(shù)列的求和公式,分類討論思想是解決問題的關鍵,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第6章 數(shù)列):6.3 等差數(shù)列、等比數(shù)列(二)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

同步練習冊答案