有相同的焦點F1、F2, P是兩條曲線的交點, 則│PF1│·│PF2│的值是

[  ]

           

A.m2-a2   

 B.(m-a)

C.m-a   

 D.-

答案:C
解析:

解: ∵│PF1│+│PF2│=2

    即(|PF1|+|PF2|)2=4m

    又∵│PF1│-│PF2│=2

    即(|PF1|-|PF2|)2=4a.

    ∴4|PF1|·|PF2|=4(m-a) 

    即|PF1|·|PF2|=m-a


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•浦東新區(qū)二模)(1)設橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•崇明縣二模)設橢圓
x2
a2
+
y2
b2
=1
(a>b>0)與雙曲線
x2
3
-
y2
1
=1
有相同的焦點F1(-c,0),F(xiàn)2(c,0)(c>0),P為橢圓上一點,△PF1F2的最大面積等于2
2
.過點N(-3,0)且傾角為30°的直線l交橢圓于A、
B兩點.
(1)求橢圓的標準方程;
(2)求證:點F1(-c,0)在以線段AB為直徑的圓上;
(3)設E、F是直線l上的不同兩點,以線段EF為直徑的圓過點F1(-c,0),求|EF|的最小值并求出對應的圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四個命題:

①平面內動點P滿足|PF1|-|PF2|=±2a(a>0,F1、F2是定點),則動點P的軌跡是雙曲線;

②曲線=1與=-1(a>b>0)有相同的漸近線;

③平面內與一個定點F和一條定直線l的距離相等的點的軌跡是拋物線;

④橢圓+=1的焦點到準線的距離是.

其中正確命題的序號是__________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)設橢圓C1數(shù)學公式與雙曲線C2數(shù)學公式有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為數(shù)學公式.設“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值;
(3)由拋物線弧E1:y2=4x(0數(shù)學公式)與第(1)小題橢圓弧E2數(shù)學公式數(shù)學公式)所合成的封閉曲線為“盾圓E”.設過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求數(shù)學公式的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市崇明縣高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

設橢圓(a>b>0)與雙曲線有相同的焦點F1(-c,0),F(xiàn)2(c,0)(c>0),P為橢圓上一點,△PF1F2的最大面積等于.過點N(-3,0)且傾角為30°的直線l交橢圓于A、
B兩點.
(1)求橢圓的標準方程;
(2)求證:點F1(-c,0)在以線段AB為直徑的圓上;
(3)設E、F是直線l上的不同兩點,以線段EF為直徑的圓過點F1(-c,0),求|EF|的最小值并求出對應的圓方程.

查看答案和解析>>

同步練習冊答案