已知函數(shù),曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
(1);
(2)y=f(x)在[-3,1]上的最大值為13,最小值為
【解析】第一問中利用曲線在點處的切線為,若時,有極值.
得到關(guān)于參數(shù)a,b,c的關(guān)系式,求解得到結(jié)論。
第二問中 ,在第一問的基礎(chǔ)上,進(jìn)一步求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)判定函數(shù)的單調(diào)性,并求解在給定區(qū)間的極值,然后比較極值和端點值的大小關(guān)系得到最值。
解:(1)由得,
當(dāng)時,切線的斜率為3,可得 ①
當(dāng)時,有極值,得
可得 ②
由①②解得
由于切點的橫坐標(biāo)為∴
∴
∴
(2)由(1)可得
∴
令,得,
當(dāng)變化時,的取值及變化如下表:
真確列出表得
1 |
|||||||
|
+ |
0 |
- |
0 |
+ |
|
|
|
13 |
|
|
4 |
∴ y=f(x)在[-3,1]上的最大值為13,最小值為
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山西省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),曲線在點處切線方程為.
(1)求的值;
(2)討論的單調(diào)性,并求的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年內(nèi)蒙古巴彥淖爾市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),曲線在點處的切線方程為。
(Ⅰ)求、的值;
(Ⅱ)證明:當(dāng),且時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)已知函數(shù),曲線在點處的切線為若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com