已知在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2=-2y+3,直線l的方程為ax+y-1=0,則直線l與圓C的位置關(guān)系是( 。
分析:將圓C方程化為標(biāo)準(zhǔn)方程,找出圓心C坐標(biāo)與半徑r,由直線l的方程的特征得到直線l恒過(0,1),判斷得到(0,1)在圓C上,可得出直線l與圓C的位置關(guān)系是相切或相交.
解答:解:將圓C方程化為標(biāo)準(zhǔn)方程得:x2+(y+1)2=4,
∴圓心C(0,-1),半徑r=2,
∵直線l:ax+y-1=0過定點(0,1),且(0,1)在圓C上,
∴直線與圓相切或相交.
故選D
點評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓的標(biāo)準(zhǔn)方程,恒過定點的直線方程,根據(jù)題意得到“直線l過定點(0,1),且(0,1)在圓C上”是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系xOy內(nèi),點P(x,y)在曲線C:
x=1+cosθ
y=sinθ
為參數(shù),θ∈R)上運(yùn)動.以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫出曲線C的標(biāo)準(zhǔn)方程和直線l的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,點M在曲線C上移動,試求△ABM面積的最大值,并求此時M點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,且過點D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點A(1,
1
2
)
,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)已知在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
,(θ為參數(shù)),以ox為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+
π
6
)
=0,則圓C截直線l所得的弦長為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中,O(0,0),A(1,-2),B(1,1),C(2,-1),動點M(x,y)滿足條件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,則z=
OM
OC
的最大值為(  )
A、-1B、0C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設(shè)點A(1,
1
2
)

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案