甲、乙兩人連續(xù)6年對某縣農(nóng)村甲魚養(yǎng)殖業(yè)的規(guī)律(總產(chǎn)量)進行調(diào)查,提供了兩個方面的信息,分別得到如下兩圖.

甲調(diào)查表明:每個甲魚池平均出產(chǎn)量從第一年1萬只甲魚上升到第六年2萬只;

乙調(diào)查表明:甲魚池個數(shù)由第一年30個減到第六年10個.

請你根據(jù)提供的信息說明:

(1)第二年甲魚池的個數(shù)及全縣出產(chǎn)甲魚總數(shù);

(2)到第六年,這個縣的甲魚養(yǎng)殖業(yè)的規(guī)模比第一年是擴大了還是縮小了?說明理由.

(3)到哪一年這個縣的甲魚養(yǎng)殖業(yè)的規(guī)模最大?其最大值是多少?


解析: (1)年份用x表示,第一年即x=1,每個甲魚池的平均產(chǎn)量用y1表示,

甲魚池的個數(shù)用y2表示.

由圖象可知,y1y2關(guān)于年份x的函數(shù)圖象都是直線,故設(shè)

y1k1xb1,y2k2xb2.

由題意知,直線y1k1xb1經(jīng)過點(1,1)和(6,2),

k1=0.2,b1=0.8.

y1=0.2(x+4).

同理可得y2=4.

當(dāng)x=2時,y1=1.2,y2=26,故第二年甲魚池的個數(shù)為26個,全縣出產(chǎn)甲魚的總數(shù)為1.2×26=31.2(萬只).

(2)第一年出產(chǎn)甲魚總數(shù)為

1×30=30(萬只),

第六年出產(chǎn)甲魚總數(shù)為

2×10=20(萬只),故規(guī)模縮小了.

(3)設(shè)第x年規(guī)模最大,即求

y1·y2=0.2(x+4)×4=-0.8x2+3.6x+27.2的最大值.

當(dāng)x=-≈2時,

上式取最大值為-0.8×4+3.6×2+27.2=31.2.

∴第二年規(guī)模最大,為31.2萬只.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


數(shù)集M滿足條件,若aM,則M(a≠±1且a≠0),已知3∈M,試把由此確定的集合M的元素全部求出來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


光線每通過一塊玻璃板,其能量要損失10%,把幾塊這樣的玻璃板重疊起來,設(shè)光線原來的能量為a,通過x塊玻璃板以后的能量為y.

(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;

(2)通過多少塊玻璃板以后,光線能量減弱到原來能量的以下?(數(shù)據(jù)lg 3=0.477 1,lg 2=0.301 0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


用長度為24 m的材料圍成一矩形場地,并且中間加兩道隔墻,要使矩形的面積最大,則隔墻的長度為(  )

A.3 m                             B.4 m

C.5 m                             D.6 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


以下是三個變量y1,y2,y3隨變量x變化的函數(shù)值表:

x

1

2

3

4

5

6

7

8

y1

2

4

8

16

32

64

128

256

y2

1

4

9

16

25

36

49

64

y3

0

1

1.585

2

2.322

2.585

2.807

3

其中,關(guān)于x呈指數(shù)函數(shù)變化的函數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


則實數(shù)ab,αβ之間的大小關(guān)系是 (  )

A.α<a<b<β                      B.a<α<β<b

C.a<α<b<β                      D.α<a<β<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知程序如下:

 

若輸入x=-5,運行結(jié)果是(  )

A.x=-5 y=10     B.x=-5 y=0

C.y=100  D.y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


閱讀下列語句,

語句計算結(jié)果為________.

查看答案和解析>>

同步練習(xí)冊答案