【題目】如圖,把長為6,寬為3的矩形折成正三棱柱,三棱柱的高度為3,矩形的對角線和三棱柱的側棱的交點記為E,F.

(1)求三棱柱的體積;

(2)求三棱柱中異面直線所成角的大小.

【答案】(1) ;(2) .

【解析】

(1)根據(jù)對折的方法可求出正三棱柱的底面正三角形的邊長,最后利用棱柱的體積公式求出即可.

(2)建立空間直角坐標系,利用空間向量的夾角公式求出即可.

(1)由操作可知;該正三棱柱的底面是邊長2的正三角形,高為3.因此體積為:

;

(2) 因為矩形的對角線和三棱柱的側棱的交點記為E,F.

所以

為坐標原點,在平面,的垂線為,所在直線為,所在直線為建立如圖所示的空間直角坐標系,如下圖:

設三棱柱中異面直線所成角為,

.

所以三棱柱中異面直線所成角的大小為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓過點,且直線的左焦點.

1)求的方程;

2)設上的任一點,記動點的軌跡為,軸的負半軸、軸的正半軸分別交于點的短軸端點關于直線的對稱點分別為、,當點在直線上運動時,求的最小值;

3)如圖,直線經(jīng)過的右焦點,并交兩點,且在直線上的射影依次為,當轉動時,直線是否相交于定點?若是,求出定點的坐標,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面給出了根據(jù)我國2012~2018年水果人均占有量(單位:)和年份代碼繪制的散點圖和線性回歸方程的殘差圖(2012~2018年的年份代碼分別為1~7).

1)根據(jù)散點圖分析之間的相關關系;

2)根據(jù)散點圖相應數(shù)據(jù)計算得,求關于的線性回歸方程;

3)根據(jù)線性回歸方程的殘差圖,分析線性回歸方程的擬合效果.(精確到001

附:回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)設,若對任意、,且,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定兩個命題,p:對任意實數(shù)x都有x2+ax+1≥0恒成立;q:冪函數(shù)y=xa-1在(0,+∞)內單調遞減;如果pq中有且僅有一個為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為、,以線段為直徑的圓與橢圓交于點.

1)求橢圓的方程;

2)過軸正半軸上一點作斜率為的直線.

①若與圓和橢圓都相切,求實數(shù)的值;

②直線軸左側交圓于兩點,與橢圓交于點、(從上到下依次為、、),且,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列六個命題:

1)若,則函數(shù)的圖像關于對稱.

2)函數(shù)在區(qū)間上都是增函數(shù).

3的反函數(shù)是

4無最大值也無最小值.

5的周期為.

6有對稱軸兩條,對稱中心三個.

則正確題個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構對全國互聯(lián)網(wǎng)行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結論中不一定正確的是( )

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術崗位的人數(shù)超過總人數(shù)的

C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比前多

D. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比后多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前項和為,且.

(1)求數(shù)列的通項公式

(2)設,若對一切正整數(shù),不等式恒成立,求實數(shù)的取值范圍;.

(3)是否存在正整數(shù),使得。成等比數(shù)列?若存在,求出所有的;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案