已知數(shù)列,滿足:.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且.
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)應(yīng)滿足的條件.
(1)
(2)①根據(jù)等差數(shù)列的定義,證明相鄰兩項(xiàng)的差為定值來得到證明。從第二項(xiàng)起滿足題意即可。
②當(dāng),數(shù)列任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次
【解析】
試題分析:解:(1)當(dāng)時(shí),有
.
又也滿足上式,所以數(shù)列的通項(xiàng)公式是. 4分
(2)①因?yàn)閷θ我獾?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060508564981731732/SYS201306050857578642645485_DA.files/image009.png">,有,所以,
,
所以,數(shù)列為等差數(shù)列. 8分
②設(shè)(其中為常數(shù)且,
所以,,
即數(shù)列均為以7為公差的等差數(shù)列. 10分
設(shè).
(其中為中一個(gè)常數(shù))
當(dāng)時(shí),對任意的,有; 12分
當(dāng)時(shí),.
(Ⅰ)若,則對任意的有,所以數(shù)列為遞減數(shù)列;
(Ⅱ)若,則對任意的有,所以數(shù)列為遞增數(shù)列.
綜上所述,集合.
當(dāng)時(shí),數(shù)列中必有某數(shù)重復(fù)出現(xiàn)無數(shù)次;
當(dāng)時(shí),數(shù)列均為單調(diào)數(shù)列,任意一個(gè)數(shù)在這6個(gè)數(shù)列中最多出現(xiàn)一次,所以數(shù)列任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次. 18分
考點(diǎn):數(shù)列的性質(zhì),數(shù)列的概念
點(diǎn)評:主要是考查了等差數(shù)列的概念和數(shù)列的單調(diào)性的運(yùn)用,屬于難度題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
n |
an |
n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
4 |
3 |
π |
3 |
π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
an-1 |
(-1)nan-1-2 |
1 | ||
|
(2n-1)π |
2 |
4 |
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
nπ |
2 |
nπ |
2 |
a2n |
a2n-1 |
5 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com