【題目】(1)求經(jīng)過直線3x+4y-2=0與直線x-y+4=0的交點(diǎn)P,且垂直于直線x-2y-1=0的直線方程;
(2)求過點(diǎn)P(-1,3),并且在兩坐標(biāo)軸上的截距相等的直線方程.
【答案】(1)2x+y+2=0;(2)3x+y=0或x+y-2=0.
【解析】
(1)聯(lián)立直線方程求出點(diǎn)的坐標(biāo),再求出所求直線的斜率,代入直線方程點(diǎn)斜式得答案;
(2)當(dāng)直線過原點(diǎn)時(shí),直線方程為y=-3x;當(dāng)直線不過原點(diǎn)時(shí),設(shè)直線方程為x+y=a,把點(diǎn)的坐標(biāo)代入求得a,則直線方程可求.
解:(1)聯(lián)立,解得,
∴兩直線的焦點(diǎn)坐標(biāo)為(-2,2),
直線x-2y-1=0斜率為,則所求直線的斜率為-2.
∴直線方程為y-2=-2(x+2),
即2x+y+2=0;
(2)當(dāng)直線過原點(diǎn)時(shí),直線方程為y=-3x;
當(dāng)直線不過原點(diǎn)時(shí),設(shè)直線方程為x+y=a,則-1+3=a,即a=2.
是求直線方程為x+y=2.
∴所求直線方程為3x+y=0或x+y-2=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為創(chuàng)建全國文明城市,我市積極打造“綠城”的創(chuàng)建目標(biāo),使城市環(huán)境綠韻縈繞,使市民生活綠意盎然.有效增加城區(qū)綠化面積,提高城區(qū)綠化覆蓋率,提升城市形象品位.林業(yè)部門推廣種植甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)根據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)根據(jù)莖葉圖,計(jì)算甲、乙兩種樹苗的高度的方差,運(yùn)用統(tǒng)計(jì)學(xué)知識(shí)分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱的底面為菱形, , , 為中點(diǎn).
(1)求證: 平面;
(2)若底面,且直線與平面所成線面角的正弦值為,求的長.
【答案】(1)證明見解析;(2)2.
【解析】試題分析:(1)設(shè)為的中點(diǎn),根據(jù)平幾知識(shí)可得四邊形是平行四邊形,即得,再根據(jù)線面平行判定定理得結(jié)論,(2)根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得平面一個(gè)法向量,根據(jù)向量數(shù)量積求向量夾角,再根據(jù)線面角與向量夾角互余關(guān)系列等式,解得的長.
試題解析:(1)證明:設(shè)為的中點(diǎn),連
因?yàn)?/span>,又,所以 ,
所以四邊形是平行四邊形,
所以
又平面, 平面,
所以平面.
(2)因?yàn)?/span>是菱形,且,
所以是等邊三角形
取中點(diǎn),則,
因?yàn)?/span>平面,
所以,
建立如圖的空間直角坐標(biāo)系,令,
則, , , ,
, , ,
設(shè)平面的一個(gè)法向量為,
則且,
取,設(shè)直線與平面所成角為,
則,
解得,故線段的長為2.
【題型】解答題
【結(jié)束】
20
【題目】橢圓:的左、右焦點(diǎn)分別為、,若橢圓過點(diǎn).
(1)求橢圓的方程;
(2)若為橢圓的左、右頂點(diǎn), ()為橢圓上一動(dòng)點(diǎn),設(shè)直線分別交直線: 于點(diǎn),判斷線段為直徑的圓是否經(jīng)過定點(diǎn),若是,求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程與離心率;
(Ⅱ)設(shè)橢圓上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)對稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被軸截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為菱形, , 平面, , ∥, 為中點(diǎn).
(1)求證: ∥平面;
(2)求證: ;
(3)若為線段上的點(diǎn),當(dāng)三棱錐的體積為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;
(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長.若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面為直角梯形,,,,為正三角形.
(1)點(diǎn)為棱上一點(diǎn),若平面,,求實(shí)數(shù)的值;
(2)求點(diǎn)B到平面SAD的距離.
【答案】(1);(2)
【解析】試題分析:(1)由平面,可證,進(jìn)而證得四邊形為平行四邊形,根據(jù),可得;
(2)利用等體積法可求點(diǎn)到平面的距離.
試題解析:((1)因?yàn)?/span>平面SDM,
平面ABCD,
平面SDM 平面ABCD=DM,
所以,
因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).
因?yàn)?/span>,
.
(2)因?yàn)?/span> , ,
所以平面,
又因?yàn)?/span>平面,
所以平面平面,
平面平面,
在平面內(nèi)過點(diǎn)作直線于點(diǎn),則平面,
在和中,
因?yàn)?/span>,所以,
又由題知,
所以,
由已知求得,所以,
連接BD,則,
又求得的面積為,
所以由點(diǎn)B 到平面的距離為.
【題型】解答題
【結(jié)束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒有獎(jiǎng)勵(lì),超過55單的部分每單獎(jiǎng)勵(lì)12元.
(1)請分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在 時(shí),日平均派送量為單.
若將頻率視為概率,回答下列問題:
①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學(xué)期望及方差;
②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由.
(參考數(shù)據(jù): , , , , , , , , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn), 是橢圓的左、右頂點(diǎn),點(diǎn)滿足.
①證明: 為定值;
②設(shè)是直線上的任一點(diǎn),直線分別另交橢圓于兩點(diǎn),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com