若sin(
π
3
-α)=
1
4
,則cos(
π
6
+α)=
 
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:直接利用誘導(dǎo)公式把要求的式子化為sin(
π
3
-α),利用條件求得結(jié)果.
解答: 解:∵sin(
π
3
-α)=
1
4
,∴cos(
π
6
+α)=cos[
π
2
-(
π
3
-α)]=sin(
π
3
-α)=
1
4
,
故答案為:
1
4
點評:本題主要考查利用誘導(dǎo)公式進(jìn)行化簡求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R*,證明:
(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);
(2)
a
b+c
+
b
c+a
+
c
a+b
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若3sinB=2sinC,a2-b2=
5
2
bc,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=xsinx在點A(
π
2
,
π
2
),B(-
π
2
,
π
2
))處的切線分別為l1,l2,設(shè)l1,l2及直線x-2y+2=0圍成的區(qū)域為D(包括邊界).設(shè)點P(x,y)是區(qū)域D內(nèi)任意一點,則x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在R上的函數(shù)f(x)圖象連續(xù)不斷,若存在常數(shù)a(a∈R),使得f(x+a)+af(x)=0對任意的實數(shù)x成立,則稱f (x)是階數(shù)為a的回旋函數(shù),現(xiàn)有下列4個命題:
①f(x)=x2必定不是回旋函數(shù);
②若f(x)=sinωx(ω≠0)為回旋函數(shù),則其最小正周期必不大于2;
③若指數(shù)函數(shù)為回旋函數(shù),則其階數(shù)必大于1;
④若對任意一個階數(shù)為a(a≥0)的回旋函數(shù)f (x),方程f(x)=0均有實數(shù)根,其中為真命題的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與函數(shù)y=x2的圖象交于A,B兩點,且線段AB與函數(shù)y=x2的圖象圍成的圖形面積為
4
3
,則線段AB的中點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,圖中的四邊形都是邊長為1的正方形,兩條虛線互相垂直,則該幾何體的體積是(  )
A、
1
6
B、
1
2
C、
5
6
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=(2-i)i,復(fù)數(shù)z2=a+3i(a∈R),若復(fù)數(shù)z2=kz1(k∈R),則a=(  )
A、
3
2
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx-cosx=-
2
,則tanx=
 

查看答案和解析>>

同步練習(xí)冊答案