5.若以O(shè)為極點(diǎn),在極坐標(biāo)系Ox中,曲線C1的極坐標(biāo)方程為ρ=$\frac{{\sqrt{2}}}{{sin({θ+\frac{π}{4}})}}$;以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸,取相同的單位長(zhǎng)度,建立平面直角坐標(biāo)系xOy,曲線C2為橢圓,且以C1與x軸的交點(diǎn)F為焦點(diǎn),C2參數(shù)方程的橫坐標(biāo)表示為x=4cosα.
(1)求曲線C1的直角坐標(biāo)方程和C2參數(shù)方程的縱坐標(biāo)表達(dá)式;
(2)定點(diǎn)P為C1上θ=$\frac{π}{4}$的點(diǎn),動(dòng)點(diǎn)M在C2上,求|MP|+|MF|的取值范圍.

分析 (1)利用極坐標(biāo)與直角坐標(biāo)互化方法求曲線C1的直角坐標(biāo)方程和C2參數(shù)方程的縱坐標(biāo)表達(dá)式;
(2)利用橢圓的定義,進(jìn)行轉(zhuǎn)化,即可求|MP|+|MF|的取值范圍.

解答 解:(1)曲線C1的極坐標(biāo)方程為ρ=$\frac{{\sqrt{2}}}{{sin({θ+\frac{π}{4}})}}$=$\frac{2}{sinθ+cosθ}$,∴x+y=2,∴F(2,0);
由題意,曲線C2為橢圓,c=2,a=4,∴橢圓方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}$=1,
∴C2參數(shù)方程的縱坐標(biāo)表達(dá)式為y=2$\sqrt{3}$sinα;
(2)定點(diǎn)P(1,1),設(shè)左焦點(diǎn)為F1,|PF1|=$\sqrt{10}$
∴|MP|+|MF|=|MP|+8-|MF1|,
∴8-$\sqrt{10}$≤|MP|+|MF|$≤8+\sqrt{10}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓O:x2+y2=4,點(diǎn)P為直線l:x=4上的動(dòng)點(diǎn).
(1)若從點(diǎn)P作圓O的切線,點(diǎn)P到切點(diǎn)的距離為$2\sqrt{3}$,求點(diǎn)P的坐標(biāo)以及兩條切線所夾劣弧長(zhǎng);
(2)若A(-2,0),B(2,0),直線PA,PB與圓O的另一個(gè)交點(diǎn)分別為M,N,求證:直線MN經(jīng)過(guò)定點(diǎn)(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.關(guān)于x的不等式|2x-m|≤1的整數(shù)解有且僅有一個(gè)值為3(m為整數(shù)).
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直線l:4x+3y+15=0,半徑為3的⊙C與l相切,圓心C在x軸上且在直線l的右上方.
(Ⅰ)求圓C的方程;
(Ⅱ)如圖過(guò)點(diǎn)M(1,0)的直線與圓C交于A、B兩點(diǎn)(A在x軸上方),問(wèn)在x軸正半軸上是否存在頂點(diǎn)N,使得x軸評(píng)分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在一個(gè)棱長(zhǎng)為4的正方體內(nèi),你認(rèn)為最多放入的直徑為1的球的個(gè)數(shù)為( 。
A.64B.65C.66D.67

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,已知cosBcosC=sin2$\frac{A}{2}$,則△ABC的形狀是( 。
A.直角三角形B.等邊三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知點(diǎn)$F(0,\frac{1}{4})$是拋物線x2=2py(p>0)的焦點(diǎn),設(shè)A(2,y0)是拋物線上的一點(diǎn).
(1)求該拋物線在點(diǎn)A處的切線l的方程;
(2)求曲線C、直線l和x軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.為研究數(shù)學(xué)成績(jī)是否對(duì)物理成績(jī)有影響,某校數(shù)學(xué)社團(tuán)對(duì)該校1501班上學(xué)期期末成績(jī)進(jìn)行了統(tǒng)計(jì),結(jié)果顯示在數(shù)學(xué)成績(jī)及格的30人中,有16人的物理成績(jī)及格,在數(shù)學(xué)成績(jī)不及格的20人中,有5人的物理成績(jī)及格.
(1)根據(jù)以上資料畫出數(shù)學(xué)成績(jī)與物理成績(jī)的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為數(shù)學(xué)成績(jī)與物理成績(jī)有關(guān)系?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;n=a+b+c+d
 P(K2≥k0 0.10 0.050.010 
 k0 2.7063.841  6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)M、N是拋物線C:y2=3x上任意兩點(diǎn),點(diǎn)E的坐標(biāo)為(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值為0,則λ=( 。
A.0B.$\frac{3}{2}$C.$\frac{3}{4}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案