已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn),且垂直于橢圓的長軸,動直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上(與也不重合),且滿足,求的取值范圍.
(1);(2);(3).
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間的距離公式等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,利用直線與圓相切列出距離公式,求出橢圓中的基本量,比較簡單;第二問,考查拋物線的定義,本問主要考查理解題意的能力;第三問,與向量相結(jié)合,再加上基本不等式求最值.
試題解析:(1)由直線與圓相切,得,即.
由,得,所以,所以橢圓的方程是. (4分)
(2)由條件,知,即動點(diǎn)到定點(diǎn)的距離等于它到直線的距離,由拋物線的定義得點(diǎn)的軌跡的方程是.(6分)
(3)由(2)知,設(shè),
∴
由,得,
∵,∴,
∴,當(dāng)且僅當(dāng),即時等號成立.
又,
∵,∴當(dāng),即時,.
故的取值范圍是.(12分)
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.點(diǎn)到直線的距離公式;3.拋物線的定義;4.基本不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓拋物線的焦點(diǎn)均在軸上,的中心和 的頂點(diǎn)均為坐標(biāo)原點(diǎn)從每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知分別是橢圓的左、右焦點(diǎn),橢圓的離心率.
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線M: 的準(zhǔn)線過橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.
(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點(diǎn)A(,0),B(,0),直線AM、BM相交于點(diǎn)M,且它們的斜率之積為.
(Ⅰ)求動點(diǎn)M的軌跡C的方程;
(Ⅱ)若直線過點(diǎn)F(1,0)且繞F旋轉(zhuǎn),與圓相交于P、Q兩點(diǎn),與軌跡C相交于R、S兩點(diǎn),若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓方程為,過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為.
(1)求橢圓方程.
(2)已知為橢圓的左右兩個頂點(diǎn),為橢圓在第一象限內(nèi)的一點(diǎn),為過點(diǎn)且垂直軸的直線,點(diǎn)為直線與直線的交點(diǎn),點(diǎn)為以為直徑的圓與直線的一個交點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線與交于兩點(diǎn).
(1)寫出的方程;
(2) ,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過拋物線的對稱軸上任一點(diǎn)作直線與拋物線交于、兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn).
(1)設(shè),證明:;
(2)設(shè)直線AB的方程是,過、兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓C經(jīng)過點(diǎn)(0,m) (m>0),且與直線y=-m相切,圓C被x軸截得弦長的最小值為1,記該圓的圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)是否存在曲線C與曲線E的一個公共點(diǎn),使它們在該點(diǎn)處有相同的切線?若存在,求出切線方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com