在△ABC中,已知a2+b2=c2+
2
ab
,則∠C=( 。
A、300
B、450
C、1500
D、1350
分析:利用余弦定理表示出cosC,把已知的等式變形后代入求出cosC的值,由C的范圍,利用特殊角的三角函數(shù)值即可求出C的度數(shù).
解答:解:由a2+b2=c2+
2
ab
得:a2+b2-c2=
2
ab

則根據(jù)余弦定理得cosC=
a2+b2-c2
2ab
=
2
ab
2ab
=
2
2
,
∵C為三角形的內(nèi)角,
∴∠C=45°.
故選B
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理的結(jié)構(gòu)特點是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A、B、C成等差數(shù)列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=45°,a=2,b=
2
,則B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=60°,
AB
AC
=1,則△ABC的面積為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的長;
(2)求sinA的值.

查看答案和解析>>

同步練習冊答案