【題目】如圖,平面平面,其中為矩形,為梯形,,,.

(Ⅰ)求證:平面;

(Ⅱ)若二面角的平面角的余弦值為,求的長.

【答案】(Ⅰ)見解析; (Ⅱ) .

【解析】

Ⅰ)由條件易得,從而可證得平面

(Ⅱ)設(shè)AB=x.以F為原點(diǎn),AF,F(xiàn)E所在的直線分別為x軸,y軸建立空間直角坐標(biāo)系,平面ABF的法向量可取=(0,1,0),通過求解平面BFD的法向量,進(jìn)而利用法向量求二面角的余弦值列方程求解即可.

(Ⅰ)平面平面,且為矩形,

平面,又平面, ,又

平面.

(Ⅱ)設(shè)AB=x.以F為原點(diǎn),AF,F(xiàn)E所在的直線分別為x軸,y軸建立空間直角坐標(biāo)系

則F(0,0,0),A(-2,0,0),E(0,,0),D(-1,,0),B(-2,0,x),

所以=(1,-,0),=(2,0,-x).

因?yàn)镋F⊥平面ABF,所以平面ABF的法向量可取=(0,1,0).

設(shè)=(x1,y1,z1)為平面BFD的法向量,

所以,可取=(,1,).

因?yàn)閏os<,>=,得x=,所以AB=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yabcos(b0)的最大值為,最小值為-.

(1)求a,b的值;

(2)求函數(shù)g(x)=-4asin的最小值并求出對應(yīng)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):

房屋面積(

115

110

80

135

105

銷售價格(萬元)

24.8

21.6

18.4

29.2

22

(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;

(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;

(3)據(jù)(2)的結(jié)果估計當(dāng)房屋面積為150時的銷售價格.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A.經(jīng)過任意三點(diǎn)有且只有一個平面.

B.過點(diǎn)有且僅有一條直線與異面直線垂直.

C.一條直線與一個平面平行,它就和這個平面內(nèi)的任意一條直線平行.

D.與平面相交,則公共點(diǎn)個數(shù)為有限個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:,其中.

臨界值表

0.10

0.05

0.025

2.706

3.841

5.024

2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),測得,,,則,兩點(diǎn)的距離為___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點(diǎn) 處有一個水聲監(jiān)測點(diǎn),另兩個監(jiān)測點(diǎn) 分別在 的正東方向 處和 處.某時刻,監(jiān)測點(diǎn) 收到發(fā)自目標(biāo) 的一個聲波, 后監(jiān)測點(diǎn) 后監(jiān)測點(diǎn) 相繼收到這一信號,在當(dāng)時的氣象條件下,聲波在水中的傳播速度是

(1)設(shè) 的距離為 ,用 分別表示 的距離,并求 的值;

(2)求目標(biāo) 的海防警戒線 的距離(精確到 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;

2)對于區(qū)間上的任意不相等的實(shí)數(shù)、,都有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】山東省于2015年設(shè)立了水下考古研究中心,以此推動全省的水下考古、水下文化遺產(chǎn)保護(hù)等工作;水下考古研究中心工作站,分別設(shè)在位于劉公島的中國甲午戰(zhàn)爭博物院和威海市博物館。為對劉公島周邊海域水底情況進(jìn)行詳細(xì)了解,然后再選擇合適的時機(jī)下水探摸、打撈,省水下考古中心在一次水下考古活動中,某一潛水員需潛水米到水底進(jìn)行考古作業(yè),其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升.

潛水員在此次考古活動中的總用氧量為升.

(Ⅰ)如果水底作業(yè)時間是分鐘,將表示為的函數(shù);

(Ⅱ)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案