【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分別是AP,AD的中點(diǎn).
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析
【解析】試題分析:(1)要證直線EF∥平面PCD,只需證明EF∥PD,EF不在平面PCD中,PD平面PCD即可;(2)連接BD,證明BF⊥AD.說(shuō)明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后證明平面BEF⊥平面PAD
試題解析:(1)在△PAD中,因?yàn)?/span>E,F分別為AP,AD的中點(diǎn),所以EF∥PD.
又因?yàn)?/span>EF不在平面PCD中,PD?平面PCD
所以直線EF∥平面PCD.
(2)連接BD.因?yàn)?/span>AB=AD,∠BAD=60°.
所以△ABD為正三角形.因?yàn)?/span>F是AD的中點(diǎn),所以BF⊥AD.
因?yàn)槠矫?/span>PAD⊥平面ABCD,BF?平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因?yàn)?/span>BF平面EBF,所以平面BEF⊥平面PAD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)若是函數(shù)的極值點(diǎn),求的值;
(Ⅱ)若在區(qū)間上單調(diào)遞增,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(I)若,求函數(shù)在點(diǎn)處的切線方程;
(II)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(III)令,(是自然對(duì)數(shù)的底數(shù)),求當(dāng)實(shí)數(shù)等于多少時(shí),可以使函數(shù)取得最小值為3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)用“五點(diǎn)法”作出函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖;
(2)求出函數(shù)的最大值及取得最大值時(shí)的x的值;
(3)求出函數(shù)在上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有兩個(gè)不同的解.
(ⅰ)求的取值范圍;
(ⅱ)若,求的取值范圍;
(2)設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)的高鐵技術(shù)發(fā)展迅速,鐵道部門計(jì)劃在兩城市之間開通高速列車,假設(shè)列車在試運(yùn)行期間,每天在兩個(gè)時(shí)間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時(shí)間及概率如下表所示:
發(fā)車 時(shí)間 | ||||||
概率 |
若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時(shí)間分別是周六的和周日的(只考慮候車時(shí)間,不考慮其他因素).
(1)設(shè)乙候車所需時(shí)間為隨機(jī)變量(單位:分鐘),求的分布列和數(shù)學(xué)期望;
(2)求甲、乙兩人候車時(shí)間相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,四邊形為直角梯形,∥,,, 平面平面.
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題:“若直線過(guò)定點(diǎn)(0,1),則 ”,
請(qǐng)判斷命題的真假,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn)A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若=﹣2,求實(shí)數(shù)k的值;
(3)過(guò)點(diǎn)(0,4)作動(dòng)直線m交圓C于E,F(xiàn)兩點(diǎn).試問(wèn):在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過(guò)點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com