16.函數(shù)y=sin(ωx-$\frac{π}{3}$)(ω>0)的最小正周期是π,則ω=2.

分析 根據(jù)三角函數(shù)的周期性及其求法即可求值.

解答 解:∵y=sin(ωx-$\frac{π}{3}$)(ω>0),
∴T=$\frac{2π}{|ω|}$=π,
∴ω=2.
故答案是:2.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的周期性及其求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\sqrt{x+1}+\frac{1}{x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,0)∪(0,+∞)B.(-1,0)∪(0,+∞)C.[-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知拋物線C:y2=8x的焦點(diǎn)為F,過(guò)F作傾斜角為60°的直線l.
(1)求直線l的方程;
(2)求直線l被拋物線C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若sinθ,cosθ是關(guān)于x的方程x2-x+a=0(a是常數(shù))的兩根,其中θ∈(0,π),則sinθ-cosθ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$滿足:|${\overrightarrow a}$|=|${\overrightarrow b}$|=1,$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{2}$,<$\overrightarrow a$-$\overrightarrow c$,$\overrightarrow b$-$\overrightarrow c$>=60°,則|${\overrightarrow c}$|的最大值為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若圓錐的側(cè)面展開(kāi)圖是半徑為2cm,圓心角為270°的扇形,則這個(gè)圓錐的體積為$\frac{3\sqrt{7}}{8}π$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知AB⊥平面BCD,BC⊥CD,AD與平面BCD所成的角為30°,且AB=BC=2;
(1)求三棱錐A-BCD的體積;
(2)設(shè)M為BD的中點(diǎn),求異面直線AD與CM所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)對(duì)任意實(shí)數(shù)x滿足f(x)=-f(x+1),且當(dāng)0≤x≤1時(shí),f(x)=x(1-x),若關(guān)于x的方程f(x)=kx有3個(gè)不同的實(shí)數(shù)根,則k的取值范圍是(5-2$\sqrt{6}$,1)∪{2$\sqrt{2}-3$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=xe2x-lnx-ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[$\frac{1}{2}$,1]上的最小值;
(2)若?x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若?x>0,不等式f($\frac{1}{x}$)-1≥$\frac{1}{x}$e${\;}^{\frac{2}{x}}$+$\frac{\frac{1}{e-1}+\frac{1}{x}}{{e}^{\frac{x}{e}}}$恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案