分析 由橢圓的方程求出頂點(diǎn)坐標(biāo),然后求出圓心坐標(biāo),進(jìn)一步求出圓的半徑可得圓的方程.
解答 解:由$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,可知橢圓的右頂點(diǎn)坐標(biāo)(4,0),上下頂點(diǎn)坐標(biāo)(0,±2),
∵圓經(jīng)過橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的三個(gè)頂點(diǎn),且圓心在x軸上.
當(dāng)圓經(jīng)過橢圓右頂點(diǎn)及短軸兩端點(diǎn)時(shí),
設(shè)圓的圓心(a,0),則$\sqrt{{a}^{2}+4}=4-a$,解得a=$\frac{3}{2}$,
圓的半徑為:$\frac{5}{2}$,
所求圓的方程為:(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$;
當(dāng)圓經(jīng)過橢圓左頂點(diǎn)及短軸兩端點(diǎn)時(shí),
討論可得圓的方程為:(x+$\frac{3}{2}$)2+y2=$\frac{25}{4}$.
故答案為:(x$±\frac{3}{2}$)2+y2=$\frac{25}{4}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,圓的方程的求法,考查計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (-∞,-1) | C. | (-1,3) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1•x2>e | B. | 1<x1•x2<e | C. | 0<x1x2<$\frac{1}{e}$ | D. | $\frac{1}{e}<{x_1}{x_2}$<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,0)∪(0,4] | B. | (-4,4) | C. | [-4,4] | D. | (-∞,4)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$,2 | B. | $\frac{\sqrt{2}}{2}$,$\sqrt{2}$ | C. | $\frac{1}{4}$,2 | D. | $\frac{1}{4}$,4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com