精英家教網 > 高中數學 > 題目詳情

【題目】如圖,正方體ABCD-A1B1C1D1 , O是底面ABCD對角線的交點.

求證:(I) C1O∥面AB1D1;
(II)面A1C⊥面AB1D1

【答案】解:(I)連結 ,設 連結 ,

是正方體,四邊形 是平行四邊形 ∴A1C1∥AC且

分別是 ,AC的中點,∴ ,,,

四邊形 是平行四邊形 . , ,∴ ∥面

(II)在正方體中,AA1⊥平面A1B1C1D1,

平面A1B1C1D1,

在平面A1B1C1D1內, ,

,

, ,

,

面A1C⊥面AB1D1 .


【解析】(1)根據已知作出輔助線由四邊形是平行四邊形可得C 1 O / / AO1 ,再結合線面平行的判定定理即可得證。(2)由已知的線線垂直得證D1B1⊥面A1C,再利用面面垂直的判定定理即可得證。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知{an}是等差數列,Sn是其前n項和.已知a1+a3=16,S4=28.
(1)求數列{an}的通項公式
(2)當n取何值時Sn最大,并求出這個最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an},{bn}滿足a1=1,a2=2,b1=2,且對任意的正整數i,j,k,l,當i+j=k+l時,都有ai+bj=ak+bl , 則 的值是(
A.2012
B.2013
C.2014
D.2015

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩條直線 ,兩個平面 ,給出下面四個命題:
, ;② , ,
, ;④ , ,
其中正確命題的序號是( )
A.①④
B.②④
C.①③
D.②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在圓x2+y2=5x內,過點 有n條弦的長度成等差數列,最短弦長為數列的首項a1 , 最長弦長為an , 若公差 ,那么n的取值集合

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】F1 , F2分別是雙曲線 =1(a,b>0)的左右焦點,點P在雙曲線上,滿足 =0,若△PF1F2的內切圓半徑與外接圓半徑之比為 ,則該雙曲線的離心率為(
A.
B.
C. +1
D. +1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的偶函數f(x)滿足f(x+1)=﹣f(x),且當x∈[﹣1,0]時, ,函數 ,則關于x的不等式f(x)<g(x)的解集為(
A.(﹣2,﹣1)∪(﹣1,0)
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=2sin(2x+ )的圖象為M,則下列結論中正確的是(
A.圖象M關于直線x=﹣ 對稱
B.由y=2sin2x的圖象向左平移 得到M
C.圖象M關于點(﹣ ,0)對稱
D.f(x)在區(qū)間(﹣ , )上遞增

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班有學生50人,其中男同學30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務活動.
(1)求從該班男女同學在各抽取的人數;
(2)從抽取的5名同學中任選2名談此活動的感受,求選出的2名同學中恰有1名男同學的概率.

查看答案和解析>>

同步練習冊答案