如圖,在正方體ABCD-A1B1C1D1中,E是棱A1D1的中點,H為平面EDB
內一點,數(shù)學公式
(1)證明HC1⊥平面EDB;
(2)求BC1與平面EDB所成的角;
(3)若正方體的棱長為a,求三棱錐A-EDB的體積.

證明:(1)設正方體的棱長為a,則,


又∵DE∩DB=D
∴HC1⊥平面EDB.
(2),設所成的角為θ

∴θ=45°.
由(1)知HC1⊥平面EDB
∴∠C1BH為BC1與平面EDB所成的角
∴∠C1BH=90°-45°=45°
(3)
分析:(1)要證明HC1⊥平面EDB即可利用線面垂直的判定定理即證明故需建立空間直角坐標系求出相應點的坐標然后利用向量的數(shù)量積進行計算即可.
(2)要求BC1與平面EDB所成的角可先求出BC1與平面EDB的法向量所成的角θ然后利用直線與平面所成的角與直線與其法向量所成的角的關系即可得解而由第一問可得即為平面EDB的法向量.
(3)要求三棱錐A-EDB的體積可輪換其頂點即求三棱錐E-ADB的體積.
點評:本題主要考查了利用空間向量證明線面垂直以及求直線與平面所成的角并且附帶考查求三棱錐的體積.解題的關鍵是首先依據(jù)所給圖形建立空間直角坐標系然后對于第一問只需利用向量的數(shù)量積證明出即可說明HC1⊥平面EDB而對于第二問可根據(jù)線面角向量的求法可先求根據(jù)向量的夾角公式求出(由第一問可得即為平面EDB的法向量)所成的角為θ然后根據(jù)cosθ>0則BC1與平面EDB所成的角為90°-θ,若cosθ<0則BC1與平面EDB所成的角θ-90°.第三問可根據(jù)輪換三棱錐的頂點其體積不變可對要求三棱錐A-EDB的體積即求三棱錐E-ADB的體積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結論,得到此三棱錐中的一個正確結論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案