11.自變量x取什么值時,下列函數(shù)為無窮。
(1)y=$\frac{1}{{x}^{2}}$;
(2)y=2x-1.

分析 無窮小就是極限為0,故本題是求極限為0時自變量的取值,進而得到答案.

解答 解:(1)∵$\lim_{x→+∞}$$\frac{1}{{x}^{2}}$=0,且$\lim_{x→-∞}$$\frac{1}{{x}^{2}}$=0,
∴x趨向于正負窮大時,y=$\frac{1}{{x}^{2}}$的函數(shù)值可以無窮。
(2)∵$\lim_{x→\frac{1}{2}}$(2x-1)=0,
∴x趨向于$\frac{1}{2}$時,y=2x-1的函數(shù)值可以無窮。

點評 本題考查極限為0時自變量的取值,解題時要認真審題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x3-2x2+1.
(1)f(x)在區(qū)間[-1,1]上的最大值;
(2)若函數(shù)g(x)=f(x)-mx區(qū)間[-2,2]上存在遞減區(qū)間,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下,據(jù)此解答下列問題:

(Ⅰ)求全班人數(shù)及分數(shù)在[80,90)之間的頻數(shù);
(Ⅱ)若要從分數(shù)在[90,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“$\frac{1}{x}>1$”是“ex-1<1”的( 。
A.充分且不必要條件B.必要且不充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.正整數(shù)列{an},{bn}滿足:a1≥b1,且對一切k≥2,k∈N*,ak是ak-1與bk-1的等差中項,bk是ak-1與bk-1的等比中項.
(1)若a2=2,b2=1,求a1,b1的值;
(2)求證:{an}是等差數(shù)列的充要條件是{an}為常數(shù)數(shù)列;
(3)記cn=|an-bn|,當n≥2(n∈N*)時,指出c2+…+cn與c1的大小關(guān)系并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=mx|x-a|-|x|+1,
(1)若m=1,a=0,試討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,且f(x)有且僅有一個零點,求m的取值范圍;
(3)若m=1,g(x)=log2(4x)•log2$\frac{4}{x}$,總存在x1∈R,對任意x2∈(0,+∞)恒有g(shù)(x2)<f(x1)-x12成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,坐標紙上的每個單元格的邊長為1,由下往上的六個點:1,2,3,4,5,6的橫、縱坐標分別對應(yīng)數(shù)列{an}(n∈N*)的前12項,如表所示.
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a2009+a2010+a2011等于( 。
A.1 003B.1 005C.1 006D.2 010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=mx+lnx.
(Ⅰ)若f(x)的最大值為-1,求實數(shù)m的值;
(Ⅱ)若f(x)的兩個零點為x1,x2且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e為自然對數(shù)的底數(shù),f′(x)是f(x)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,若a1=1,an=3Sn-1+4(n≥2).
(1)求數(shù)列{an}的通項公式,
(2)令bn=log2$\frac{{a}_{n+2}}{7}$,cn=$\frac{_{n}}{{2}^{n+1}}$,其中n∈N+,記數(shù)列{cn}的前項和為Tn,是否存在k∈N+,使得Tn≥Tk恒成立,若存在這樣的k的值,請求出;若不存在這樣的k的值,請說明理由.

查看答案和解析>>

同步練習冊答案