函數(shù)f(x)定義在(0,+¥ )上,且對(duì)x,yÎ (0,+¥ )均有f(xy)=f(x)+f(y),且f(x)在(0,+¥ )上是增函數(shù),若f(2)=1,解不等式f(x)+f(x-2)<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:福建省南安一中2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044
設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù),.
(1)求g(x)的單調(diào)區(qū)間和最小值;
(2)討論g(x)與的大小關(guān)系;
(3)是否存在x0>0,使得對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(04年北京卷文)(14分)
函數(shù)f(x)定義在[0,1]上,滿足且f(1)=1,在每個(gè)區(qū)間=1,2,…)上, y=f(x) 的圖象都是平行于x軸的直線的一部分.
(Ⅰ)求f(0)及的值,并歸納出)的表達(dá)式;
(Ⅱ)設(shè)直線軸及y=f(x)的圖象圍成的矩形的面積為, 求a1,a2及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)定義在R上,對(duì)任意m、n恒有f(m+n)=f(m)·f(n),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證: f(0)=1,且當(dāng)x<0時(shí),f(x)>1;
(2)求證:f(x)在R上單調(diào)遞減;
(3)設(shè)集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,f(2-x)=f(x),且當(dāng)x≥1時(shí),f(x)=lnx,則有( )
A.f()<f(2)<f() B.f()<f(2)<f()
C.f()<f()<f(2) D.f(2)<f()<f()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省南昌市高三第一次月考理科數(shù)學(xué)卷 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)F(x)=(x2+1) f (x) – g(x)在[1,+∞)上的單調(diào)性;
(2)當(dāng)0<a<b時(shí),求證:函數(shù)f (x) 定義在區(qū)間[a,b]上的值域的長(zhǎng)度大于(閉區(qū)間[m,n]的長(zhǎng)度定義為n –m).
(3)方程f(x)=是否存在實(shí)數(shù)根?說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com