已知雙曲線(xiàn)與圓O:x2+y2=3相切,過(guò)C的左焦點(diǎn)且斜率為的直線(xiàn)也與圓O相切.

(1)求雙曲線(xiàn)C的方程;

(2)P是圓O上在第一象限內(nèi)的點(diǎn),過(guò)P且與圓O相切的直線(xiàn)l與C的右支交于A、B兩點(diǎn),△AOB的面積為,求直線(xiàn)l的方程.

答案:
解析:

  解:(1)∵雙曲線(xiàn)與圓相切,∴  2分

  由過(guò)的左焦點(diǎn)且斜率為的直線(xiàn)也與圓相切,得,進(jìn)而

  故雙曲線(xiàn)的方程為  5分

  (2)設(shè)直線(xiàn),,

  圓心到直線(xiàn)的距離,由  7分

  由  *

  則,  9分

  

  

  又的面積,∴  11分

  由,解得,,此時(shí)*式

  ∴直線(xiàn)的方程為  13分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,右準(zhǔn)線(xiàn)方程為x=
3
3

(I)求雙曲線(xiàn)C的方程;
(Ⅱ)設(shè)直線(xiàn)l是圓O:x2+y2=2上動(dòng)點(diǎn)P(x0,y0)(x0y0≠0)處的切線(xiàn),l與雙曲線(xiàn)C交于不同的兩點(diǎn)A,B,證明∠AOB的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線(xiàn)C1:2x2-y2=1.
(1)過(guò)C1的左頂點(diǎn)引C1的一條漸進(jìn)線(xiàn)的平行線(xiàn),求該直線(xiàn)與另一條漸進(jìn)線(xiàn)及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線(xiàn)l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線(xiàn)MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)E:
x2
24
-
y2
12
=1
的左焦點(diǎn)為F,左準(zhǔn)線(xiàn)l與x軸的交點(diǎn)是圓C的圓心,圓C恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,設(shè)G是圓C上任意一點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線(xiàn)FG與直線(xiàn)l交于點(diǎn)T,且G為線(xiàn)段FT的中點(diǎn),求直線(xiàn)FG被圓C所截得的弦長(zhǎng);
(Ⅲ)在平面上是否存在定點(diǎn)P,使得對(duì)圓C上任意的點(diǎn)G有
|GF|
|GP|
=
1
2
?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)的中心在原點(diǎn)O,其中一條準(zhǔn)線(xiàn)方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線(xiàn)L:y=kx+3與雙曲線(xiàn)交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線(xiàn)L:y=kx+3與雙曲線(xiàn)交于A、B兩點(diǎn),C是直線(xiàn)L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線(xiàn))試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)
與雙曲線(xiàn)n:
x2
4
-
y2
5
=1
有兩個(gè)公共點(diǎn),且橢圓m與雙曲線(xiàn)n的離心率之和為2.
(1)求橢圓m的方程;
(2)過(guò)橢圓m上的動(dòng)點(diǎn)P作互相垂直的兩條直線(xiàn)l1,l2,l1與圓O:x2+y2=a2+b2相交于點(diǎn)A,C,l2與圓x∈[2,6]相交于點(diǎn)B,D,求四邊形ABCD的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案