橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左準(zhǔn)線為l,左、右焦點(diǎn)分別為F1,F(xiàn)2,拋物線C2的準(zhǔn)線也為l,焦點(diǎn)為F2,記C1與C2的一個(gè)交點(diǎn)為P,則
|F1F2|
|PF1|
-
|PF1|
|PF2|
=( 。
A、
1
2
B、1
C、2
D、與a,b的取值無關(guān)
分析:P到橢圓的左準(zhǔn)線的距離設(shè)為d,先利用橢圓的第二定義求得|PF1|=
c
a
d,利用拋物線的定義可知|PF2|=d,最后根據(jù)橢圓的定義可知|PF2|+|PF1|=2a且
|PF1|
|PF2|
=
c
a
,求得|PF2|,|PF1|,可得
|F1F2|
|PF1|
-
|PF1|
|PF2|
解答:解:橢圓的離心率為
c
a
,
P到橢圓的左準(zhǔn)線的距離設(shè)為d,
則|PF1|=
1
2
d,|PF2|+|PF1|=2a,又|PF2|=d,
∴d=|PF2|=
2a2
a+c
,|PF1|=
2ac
a+c

|F1F2|
|PF1|
-
|PF1|
|PF2|
=
2c
2ac
a+c
-
c
a
=1

故選B.
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).解題的關(guān)鍵是靈活利用橢圓和拋物線的定義.本題考查圓錐曲線的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,注意公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2:y=x2-1與y軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn).
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)M(0,-
4
5
),N為拋物線C2上的一動(dòng)點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F2與拋物線C2y2=4x的焦點(diǎn)重合,橢圓C1與拋物線C2在第一象限的交點(diǎn)為P,|PF2|=
5
3
,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•三門峽模擬)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4,離心率為
1
2
,F(xiàn)1、F2分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn)F2,且與直線x=-1相切.
(Ⅰ)(。┣髾E圓C1的方程; (ⅱ)求動(dòng)圓圓心C軌跡的方程;
(Ⅱ)在曲線上C有兩點(diǎn)M、N,橢圓C1上有兩點(diǎn)P、Q,滿足MF2
NF2
共線,
PF2
QF2
共線,且
PF2
MF2
=0,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
A2
+
y2
B2
=1(A>B>0)
和雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有相同的焦點(diǎn)F1、F2,2c是它們的共同焦距,且它們的離心率互為倒數(shù),P是它們在第一象限的交點(diǎn),當(dāng)cos∠F1PF2=60°時(shí),下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭一模)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,離心率e=
1
2

(1)設(shè)拋物線C2:y2=4x的準(zhǔn)線與x軸交于F1,求橢圓的方程;
(2)設(shè)已知雙曲線C3以橢圓C1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),b是雙曲線C3在第一象限上任意-點(diǎn),問是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案