【題目】已知是各項均為正數(shù)的等比數(shù)列,.
(1)求的通項公式;
(2)設,求數(shù)列的前n項和.
【答案】(1);(2).
【解析】
(1)本題首先可以根據(jù)數(shù)列是等比數(shù)列將轉化為,轉化為,再然后將其帶入中,并根據(jù)數(shù)列是各項均為正數(shù)以及即可通過運算得出結果;
(2)本題可以通過數(shù)列的通項公式以及對數(shù)的相關性質計算出數(shù)列的通項公式,再通過數(shù)列的通項公式得知數(shù)列是等差數(shù)列,最后通過等差數(shù)列求和公式即可得出結果。
(1)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,,
所以令數(shù)列的公比為,,,
所以,解得(舍去)或,
所以數(shù)列是首項為、公比為的等比數(shù)列,。
(2)因為,所以,,,
所以數(shù)列是首項為、公差為的等差數(shù)列,。
本題考查數(shù)列的相關性質,主要考查等差數(shù)列以及等比數(shù)列的通項公式的求法,考查等差數(shù)列求和公式的使用,考查化歸與轉化思想,考查計算能力,是簡單題。
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,過作互相垂直的兩條直線分別與相交于,和,四點.
(1)四邊形能否成為平行四邊形,請說明理由;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是(單位:萬元)和(單位:萬元),它們與投入資金(單位:萬元)的關系有經(jīng)驗公式,,今將萬元資金投入甲、乙兩種商品,其中對甲商品投資(單位:萬元).
(1)試建立總利潤(單位:萬元)關于的函數(shù)關系式,并寫出函數(shù)的定義域;
(2)問:如何分配資金,才能使得總利潤(單位:萬元)最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某房產(chǎn)中介公司2017年9月1日正式開業(yè),現(xiàn)對其每個月的二手房成交量進行統(tǒng)計,表示開業(yè)第個月的二手房成交量,得到統(tǒng)計表格如下:
(1)統(tǒng)計中常用相關系數(shù)來衡量兩個變量之間線性關系的強弱.統(tǒng)計學認為,對于變量,如果,那么相關性很強;如果,那么相關性一般;如果,那么相關性較弱.通過散點圖初步分析可用線性回歸模型擬合與的關系.計算的相關系數(shù),并回答是否可以認為兩個變量具有很強的線性相關關系(計算結果精確到0.01)
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程(計算結果精確到0.01),并預測該房產(chǎn)中介公司2018年6月份的二手房成交量(計算結果四舍五入取整數(shù)).
(3)該房產(chǎn)中介為增加業(yè)績,決定針對二手房成交客戶開展抽獎活動.若抽中“一等獎”獲6千元獎金;抽中“二等獎”獲3千元獎金;抽中“祝您平安”,則沒有獎金.已知一次抽獎活動中獲得“一等獎”的概率為,獲得“二等獎”的概率為,現(xiàn)有甲、乙兩個客戶參與抽獎活動,假設他們是否中獎相互獨立,求此二人所獲獎金總額(千元)的分布列及數(shù)學期望.
參考數(shù)據(jù):,,,,.
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中N,≥2,且R.
(1)當,時,求函數(shù)的單調區(qū)間;
(2)當時,令,若函數(shù)有兩個極值點,,且,求的取值范圍;
(3)當時,試求函數(shù)的零點個數(shù),并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),過點且傾斜角為的直線交曲線于,兩點.
(Ⅰ)求曲線的直角坐標方程和直線的參數(shù)方程;
(Ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點為,短軸的兩個端點分別為A,B,且滿足:,且橢圓經(jīng)過點
(1)求橢圓的標準方程;
(2)設過點M的動直線(與X軸不重合)與橢圓C相交于P,Q兩點,在X軸上是否存在一定點T,無論直線如何轉動,點T始終在以PQ為直徑的圓上?若有,求點T的坐標,若無,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com