【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對應(yīng)的點M(m,n)在曲線 上運動,求復(fù)數(shù)z所對應(yīng)的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量 方向平移 個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標.

【答案】
(1)解:∵ i﹣z2=(m﹣ni)i﹣(2+4i)=(n﹣2)+(m﹣4)i;

∵復(fù)數(shù)z1對應(yīng)的點M(m,n)在曲線 上運動

∴x+2=﹣ (y+7)2﹣1(y+7)2=﹣2(x+3).

復(fù)數(shù)z所對應(yīng)的點P(x,y)的軌跡方程:(y+7)2=﹣2(x+3).


(2)解:∵按向量 方向平移 個單位, = =1×

即為向 x 方向移動 1× = 個單位,向 y 方向移動 1×1=1 個單位

(y+7)2=﹣2(x+3)y+7=±

得軌跡方程 y+7=± (y+6)2=﹣2(x+ )=﹣2x﹣3.

C的軌跡方程為:(y+6)2=﹣2x﹣3.


(3)解:設(shè)A(x0,y0),斜率為k,切線y﹣y0=k(x﹣x0) (k≠0),

代入(y+6)2=﹣2x﹣3整理得:

(y+6)2=﹣2( )﹣3,△=0k= ,

設(shè)定點M(1,0),且

∴以線段AB為直徑的圓恒過一定點M,M點的坐標(1,0).


【解析】(1)根據(jù)復(fù)數(shù)條件求出關(guān)系式 ,結(jié)合復(fù)數(shù)z1對應(yīng)的點M(m,n)在曲線 上運動即可得出復(fù)數(shù)z所對應(yīng)的點P(x,y)的軌跡方程;(2)先按向量 方向平移 個單位得到即為向 x 方向移動 1× = 個單位,向 y 方向移動 1×1=1 個單位,再進行函數(shù)式的變換即可得出C的軌跡方程;(3)設(shè)A(x0,y0),斜率為k,切線y﹣y0=k(x﹣x0) 代入(y+6)2=﹣2x﹣3消去x得到關(guān)于y的一元二次方程,再結(jié)合根的判別式為0利用向量的數(shù)量即可求得定點,從而解決問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),將其圖象向右平移 ,則所得圖象的一條對稱軸是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣ =0截得的弦長為2
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得 為定值?若存在,試求出點M的坐標和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知向量 平行.
(1)求 的值;
(2)若bcosC+ccosB=1,△ABC周長為5,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l過點P(0,3),和橢圓 交于A、B兩點(A在B上方),試求 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為總信號源點,A,B,C是三個居民區(qū),已知A,B都在O的正東方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5 km.
(1)求居民區(qū)A與C的距離;
(2)現(xiàn)要經(jīng)過點O鋪設(shè)一條總光纜直線EF(E在直線OA的上方),并從A,B,C分別鋪設(shè)三條最短分光纜連接到總光纜EF.假設(shè)鋪設(shè)每條分光纜的費用與其長度的平方成正比,比例系數(shù)為m(m為常數(shù)).設(shè)∠AOE=θ(0≤θ<π),鋪設(shè)三條分光纜的總費用為w(元). ①求w關(guān)于θ的函數(shù)表達式;
②求w的最小值及此時tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點A,B,C,D在同一個球的球面上,AB=BC= ,∠ABC=90°,若四面體ABCD體積的最大值為3,則這個球的表面積為(
A.2π
B.4π
C.8π
D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點,PA=PD=AD=2
(1)點M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;
(2)在(1)的條件下,若平面PAD⊥平面ABCD,求二面角M﹣BQ﹣C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓x2+y2﹣2x﹣8y+13=0的圓心到直線ax+y﹣1=0的距離為1,則a=(
A.﹣
B.﹣
C.
D.2

查看答案和解析>>

同步練習冊答案