精英家教網 > 高中數學 > 題目詳情

已知函數處存在極值.
(1)求實數的值;
(2)函數的圖像上存在兩點A,B使得是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在軸上,求實數的取值范圍;
(3)當時,討論關于的方程的實根個數.

(1) .(2)的取值范圍是.(3)①當時,方程有兩個實根;②當時,方程有三個實根;③當時,方程有四個實根.

解析試題分析:(1)求導得,將代入解方程組即得.(2) 由(1)得根據條件知A,B的橫坐標互為相反數,不妨設.接下來根據大于等于1和小于1分別求解.(3)由方程
,顯然0一定是方程的根,所以僅就時進行研究,這時方程等價于,構造函數,利用導數作出的圖象即可得方程的要的個數.
試題解析:(1)當時,.      1分
因為函數處存在極值,所以
解得.      4分
(2) 由(I)得
根據條件知A,B的橫坐標互為相反數,不妨設.
,則,
是直角得,,即,
.此時無解;      6分
,則. 由于AB的中點在軸上,且是直角,所以B點不可能在軸上,即. 同理有,即.
因為函數上的值域是,
所以實數的取值范圍是.      8分
(3)由方程,知,可知0一定是方程的根, 10分
所以僅就時進行研究:方程等價于
構造函數
對于部分,函數的圖像是開口向下的拋物線的一部分,
時取得最大值,其值域是
對于部分,函數,由
知函數上單調遞增.
所以,①當時,方程有兩個實根;
②當時,方程有三個實根;
③當時,方程有四個實根.       14分
考點:1、導數的應用;2、方程的根.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3+ax2+bx(a,b∈R).
(1)當a=1時,求函數f(x)的單調區(qū)間;
(2)若f(1)=,且函數f(x)在上不存在極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,(其中).
(1)求的單調區(qū)間;
(2)若函數在區(qū)間上為增函數,求的取值范圍;
(3)設函數,當時,若存在,對任意的,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數f(x)=xax2bln x,曲線yf(x)在點P(1,0)處的切線斜率為2.
(1)求ab的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)求函數的單調區(qū)間;
(2)若方程有且只有一個解,求實數m的取值范圍;
(3)當,時,若有,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=axln x圖象上點(e,f(e))處的切線與直線y=2x平行,g(x)=x2tx-2.
(1)求函數f(x)的解析式;
(2)求函數f(x)在[n,n+2](n>0)上的最小值;
(3)對一切x∈(0,e],3f(x)≥g(x)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)記函數的最小值為,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=lnx-ax(a>0).
(I)當a=2時,求f(x)的單調區(qū)間與極值;
(Ⅱ)若對于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

查看答案和解析>>

同步練習冊答案