7.如圖,在幾何體ABDCE中,AB=AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,AE=MC.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.

分析 (1)先證明AM⊥BD,MC⊥AM,從而AM⊥平面CBD,再由EC⊥平面CBD,能證明平面BCD⊥平面CDE.
(2)由三角形中位線定理得MN∥BE,再由EC∥AM,能證明平面AMN∥平面BEC.

解答 證明:(1)∵AB=AD,M為線段BD的中點,∴AM⊥BD.
∵AE⊥平面ABD,MC∥AE,∴MC⊥平面ABD.
∴MC⊥AM,∴AM⊥平面CBD.
又MC∥AE,MC=AE,∴四邊形AMCE為平行四邊形,
∴EC∥AM,∴EC⊥平面CBD,
∴平面BCD⊥平面CDE.
(2)∵M為BD中點,N為ED中點,
∴MN∥BE
由(1)知,EC∥AM且AM∩MN=M,BE∩EC=E,
∴平面AMN∥平面BEC.

點評 本題考查面面垂直、面面平行的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.過點M(-4,2),傾斜角是90°的直線方程為x=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知PQ與圓O相切于點A,直線PBC交圓于B、C兩點,D是圓上一點,且AB∥DC,DC的延長線交PQ于點Q.
(1)求證:AC2=CQ•AB;
(2)若AQ=2AP,AB=$\sqrt{2}$,BP=2,求QD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=2x+lg(x+1)-5的零點x0∈(k,k+1),k∈Z,則k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ax2-bx+3,且f(x)>0的解集為(-1,3),
(1)求函數(shù)f(x)的表達式;
(2)設(shè)g(x)=$\frac{f(x)}{x}$,若g(3+2sinθ)≥$\frac{1}{5}$m2-$\frac{12}{5}$m對任意θ∈R恒成立,則實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=lg(1-x)+$\frac{1}{{\sqrt{x+2}}}$的定義域為(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校在2015年11月份的高三期中考試后,隨機地抽取了50名學(xué)生的數(shù)學(xué)成績并進行了分析,結(jié)果這50名同學(xué)的成績?nèi)拷橛?0分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組[80,90),第二組[90,100),…,第六組[130,140],得到如圖所示的頻率分布直方圖.
(I)求a的值;
(II)這50名學(xué)生中成績在120分以上的同學(xué)中任意抽取3人,該3人在130分(含130分)以上的人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$cos(α-\frac{π}{2})=\frac{3}{5}$且$α∈(\frac{π}{2},π)$,則cosα=-$\frac{4}{5}$,$tan(α-\frac{π}{4})$=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知等比數(shù)列{an}的前n項和Sn=x•3n-1-$\frac{1}{6}$,則x=$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案